A controlled experiment is best described as a safe, in depth, and insightful display that helps you understand the purpose of the experiment better
<u>Answer: </u>
<em>Considering the II law of thermodynamics</em>
<em>From the figure</em>
<em>Out put of energy: </em>
Heat supplied from the source/ reservoir (Q₁) - Heat rejected to the surroundings from the system (Q) = Q₁ - Q₂. Also known as Net work done on the system.
<em>Input of energy: </em>
Amount of heat energy supplied to the system from the source (Q₁ ).
Efficiency (H.E) = η = Output÷ Input
η = (Q₁ - Q₂) ÷ Q₁
OR η = Wnet ÷ Q₁ ; since Wnet = (Q₁ - Q₂)
Answer: if the heat energy is wasted, then, energy is lost forever.
Explanation: According to conservative of energy, which state that energy is neither created nor destroyed but only convert from one form to another.
The energy which should have been used in one form has been converted to heat energy which could have been used for for thing or the other, if there is nothing the heat energy can be used for, then the energy is wasted. This is tantamount to being lost forever.
Answer:
infrared part of the spectrum
Explanation:
brown dwarfs are relatively cool and have temperatures of about 2000 K emitting their light in the infrared and practically none in the ultraviolet part of the spectrum.
Answer:
Part a)

Part b)

Part c)
So from above discussion we have the result that energy loss will be more if the collision occurs with animal with more mass
Explanation:
Part a)
Let say the collision between Moose and the car is elastic collision
So here we can use momentum conservation


also by elastic collision condition we know that

now we have

now we have

Now loss in kinetic energy of the car is given as


so fractional loss in energy is given as



Part b)
Let say the collision between Camel and the car is elastic collision
So here we can use momentum conservation


also by elastic collision condition we know that

now we have

now we have

Now loss in kinetic energy of the car is given as


so fractional loss in energy is given as



Part c)
So from above discussion we have the result that energy loss will be more if the collision occurs with animal with more mass