<span>The bright, visible surface of the Sun is called corona. The outermost layer of the Sun's atmosphere is called chromosphere.</span>
To contrast inner and outer planets we will start with the climate of the planets and then move on to there lighting. To start the planets closet to the sun, mercury, venus, earth and mars, are all hot compared to the further one, jupiter, saturn, uranus, neptune. This distance also makes the farthe away planets darker than the ones closer. Now to compare all the planets vary from either gass or solid, rocky or icy. All of them spin around the sun and all have objects spinning around them, moons.
Explanation:
Let magnitude of the two forces be x and y.
Resultant at right angle R1= √15N) and at
60 degrees be R2= √18N.
Now, R1 = √(x² + y²) = √15,
R2= √(x² + y² +2xycos50) = √18.
So x² + y² = 15,
and x² + y² + 1.29xy = 18,
therefore 1.29xy = 3,
y = 3/1.29x.
y = 2.33/x
Now, x2 + (2.33/x)2 = 15,
x² + 5.45/x² = 15
multiply through by x²
x⁴ + 5.45 = 15x²
x⁴ - 15x2 + 5.45 = 0
Now find the roots of the equation, and later y. The two values of x will correspond to the
magnitudes of the two vectors.
Good luck
R is proportional to the length of the wire:
R ∝ length
R is also proportional to the inverse square of the diameter:
R ∝ 1/diameter²
The resistance of a wire 2700ft long with a diameter of 0.26in is 9850Ω. Now let's change the shape of the wire, adding and subtracting material as we go along, such that the wire is now 2800ft and has a diameter of 0.1in.
Calculate the scale factor due to the changed length:
k₁ = 2800/2700 = 1.037
Scale factor due to changed diameter:
k₂ = 1/(0.1/0.26)² = 6.76
Multiply the original resistance by these factors to get the new resistance:
R = R₀k₁k₂
R₀ = 9850Ω, k₁ = 1.037, k₂ = 6.76
R = 9850(1.037)(6.76)
R = 69049.682Ω
Round to the nearest hundredth:
R = 69049.68Ω