To help fight off disease and viruses
Decompose the forces acting on the block into components that are parallel and perpendicular to the ramp. (See attached free body diagram. Forces are not drawn to scale)
• The net force in the parallel direction is
∑ <em>F</em> (para) = -<em>mg</em> sin(21°) - <em>f</em> = <em>ma</em>
• The net force in the perpendicular direction is
∑ <em>F</em> (perp) = <em>n</em> - <em>mg</em> cos(21°) = 0
Solving the second equation for <em>n</em> gives
<em>n</em> = <em>mg</em> cos(21°)
<em>n</em> = (0.200 kg) (9.80 m/s²) cos(21°)
<em>n</em> ≈ 1.83 N
Then the magnitude of friction is
<em>f</em> = <em>µn</em>
<em>f</em> = 0.25 (1.83 N)
<em>f</em> ≈ 0.457 N
Solve for the acceleration <em>a</em> :
-<em>mg</em> sin(21°) - <em>f</em> = <em>ma</em>
<em>a</em> = (-0.457N - (0.200 kg) (9.80 m/s²) sin(21°))/(0.200 kg)
<em>a</em> ≈ -5.80 m/s²
so the block is decelerating with magnitude
<em>a</em> = 5.80 m/s²
down the ramp.
Answer:
Conduction heat transfer is the transfer of <em>heat by means of molecular excitement within a material without bulk motion</em> of the matter.
Explanation:
Conduction heat transfer in gases and liquids is due to the collisions and diffusion of the molecules during heir random motion.
Answer:
0.102 m
Explanation:
k = spring constant of the spring = 125 N/m
m = mass of the block attached to the spring = 650 g = 0.650 kg
x = maximum extension of the spring
h = height dropped by the block = x
Using conservation of energy
Spring potential energy gained = Gravitational potential energy lost
(0.5) k x² = mgh
(0.5) k x² = mgx
(0.5) (125) x = (0.650) (9.8)
x = 0.102 m
Answer:
5.3 m/s
Explanation:
First, find the time it takes for him to fall 7m.
y = y₀ + v₀ t + ½ at²
0 = 7 + (0) t + ½ (-9.8) t²
0 = 7 − 4.9 t²
t ≈ 1.20 s
Now find the velocity he needs to travel 6.3m in that time.
x = x₀ + v₀ t + ½ at²
6.3 = 0 + v₀ (1.20) + ½ (0) (1.20)²
v₀ ≈ 5.27 m/s
Rounded to two significant figures, the man must run with a speed of 5.3 m/s.