Just use the Heisenberg Uncertainty principle:
<span>ΔpΔx = h/2*pi </span>
<span>Δp = the uncertainty in momentum </span>
<span>Δx = the uncertainty in position </span>
<span>h = 6.626e-34 J s (plank's constant) </span>
<span>Hint: </span>
<span>to calculate Δp use the fact that the uncertainty in the momentum is 1% (0.01) so that </span>
<span>Δp = mv*(0.01) </span>
<span>m = mass of electron </span>
<span>v = velocity of electron </span>
<span>Solve for Δx </span>
<span>Δx = h/(2*pi*Δp) </span>
<span>And that is the uncertainty in position. </span>
Answer:
Explanation:
Ksp(BaSO4)=1.07×10−10
BaSO₄ → Ba²⁺ + SO₄²⁻
1.07×10⁻¹⁰ = ( Ba²⁺) × ( SO₄²⁻)
but Ba²⁺ = 1.3×10⁻² M
1.07×10⁻¹⁰ = 1.3×10⁻² M × ( SO₄²⁻)
( SO₄²⁻) = 1.07×10⁻¹⁰ / 1.3×10⁻² = 0.823 × 10⁻⁸ M
while Ksp(CaSO4)=7.10×10−5
CaSO₄ → Ca²⁺ + SO₄²⁻
7.10×10⁻⁵ = 2.0×10⁻² × ( SO₄²⁻)
( SO₄²⁻) = 7.10×10⁻⁵ / 2.0×10⁻² = 3.55 × 10⁻³ M
comparing the concentration of sulfate ions, Ba²⁺ cation will precipitate first because the Ba²⁺ requires 0.823 × 10⁻⁸ M sodium sulfate which less compared the about needed by CaSO₄
B. All atoms of silver have the same atomic number but different numbers of neutrons in the nucleus.
Answer:
A student can predict Amount of calories present if she finds the mass of whole candy bar,including the wrapper.
<u>Explanation:</u>
Based on the mass of a whole candy bar a student can predict the calories contained in the candy bar. If the mass of candy bar is more than it means it has more calories and if the candy bar has less mass than it shows the presence of fewer calories.
More calories mean more sugar content in the candy bar. With sugar, the candy bar has carbohydrates also. The sugar present in the bar gives us energy.
The question is incomplete, the complete question is;
Choose the aqueous solution that has the highest boiling point. These are all solutions of nonvolatile solutes and you should assume ideal van't Hoff factors where applicable. 0.100 m C6H12O6 0.100 m AlCl3 0.100 m NaCl 0.100 m MgCl2 They all have the same boiling point.
Answer:
AlCl3 0.100 m
Explanation:
Let us remember that the boiling point elevation is given by;
ΔTb = Kb m i
Where;
ΔTb = boiling point elevation
Kb = boiling point constant
m = molality of the solution
i = Van't Hoff factor
We can see from the question that all the solutions possess the same molality, ΔTb now depends on the value of the Van't Hoff factor which in turn depends on the number of particles in solution.
AlCl3 yields four particles in solution, hence ΔTb is highest for AlCl3 . The solution having the highest value of ΔTb also has the highest boiling point.