Assume an original volume of blood of one deciliter (100 ml). if 5 ml of oxygen diffuses into the blood, 100 ml will be its final volume.
A tissue is made up of white blood cells, platelets, red blood cells, and other elements suspended in a liquid. Blood transports waste away and delivers nutrients and oxygen to the tissues. The entire amount of fluid moving through the heart's arteries, capillaries, veins, venules, and chambers is referred to as blood volume. Red blood cells (erythrocytes), white blood cells (leukocytes), platelets, and plasma are the elements that give blood volume.
The amount of water and sodium ingested, expelled by the kidneys into the urine, and lost through the digestive system, lungs, and skin determines blood volume. The amounts of salt and water that are consumed and excreted vary greatly.
To know more about blood volume refer to: brainly.com/question/7313563
#SPJ4
<h3><u>Answer</u>;</h3>
≈ 4.95 g/L
<h3><u>Explanation;</u></h3>
The molar mass of KCl = 74.5 g/mole
Therefore; 0.140 moles will be equivalent to ;
= 0.140 moles × 74.5 g/mole
= 10.43 g
Concentration in g/L
= mass in g/volume in L
= 10.43/2.1
= 4.9667
<h3> <u> ≈ 4.95 g/L</u></h3>
Answer : Option A) The body breaks down the molecules into molecules they need.
Explanation : Nutrient molecules are important because the body breaks the nutrient molecules and convert it into the absorb-able molecule that can generate energy for doing the activities of the body.
Nutrients are taken in the body in the form of carbohydrates which later on gets broken into glucose molecules and generates energy, proteins which is decomposed into amino acids, fats breaks down into fatty acids, minerals and salts are also nutrients which is essential nutrient for body.
Answer:
(R)-but-3-en-2-ylbenzene
Explanation:
In this reaction, we have a very <u>strong base</u> (<em>sodium ethoxide</em>). This base, will remove a hydrogen producing a double bond. We know that the reaction occurs through an <u>E2 mechanism</u>, therefore, the hydrogen that is removed must have an <u>angle of 180º</u> with respect to the leaving group (the "OH"). This is known as the <u>anti-periplanar configuration</u>.
The hydrogen that has this configuration is the one that placed with the <u>dashed bond</u> (<em>red hydrogen</em>). In such a way, that the base will remove this hydrogen, the "OH" will leave the molecule and a double bond will be formed between the methyl and the carbon that was previously attached to the "OH", producing the molecule (R) -but-3- en-2-ylbenzene.
See figure 1
I hope it helps!