Although many characteristics are common<span> throughout the </span>group<span>, the heavier metals such as Ca, Sr, Ba, and Ra are almost as reactive as the </span>Group<span> 1 Alkali Metals. All the </span>elements<span> in </span>Group 2 have two<span> electrons in their valence shells, giving them an oxidation state of +</span><span>2.</span>
Answer:
764728497693575177015915715716245378tr7138
Explanation:
Answer:
When a negative charge is brought near one end of a conductor electrons are repelled. ... When electric voltage is applied, an electric field within the metal triggers the movement of the electrons, making them shift from one end to another end of the conductor. Electrons will move toward the positive side.
Answer:
Explanation:
ΔE = Δm × c^2
where,
ΔE = change in energy released with respect to change in mass
= 1.554 × 10^3 kJ
= 1.554 × 10^6 J
Δm = change in mass
c = the speed of light.
= 3 × 10^8 m/s
Equation of the reaction:
2H2 + O2 --> 2H2O
Mass change in this process, Δm = 1.554 × 10^6/(3 × 10^8)^2
= 1.727 × 10^-11 kg
The change in mass calculated from Einstein equation is small that its effect on formation of product will be negligible. Hence, law of conservation of mass holds correct for chemical reactions.
The force required to push the box upward is 145.3N and the force to pus the box downward is -109.3N
Data given;
- mass = 15kg
- angle = 30 degree
- acceleration = 1.2 m/s^2
- acceleration due to gravity = 9.8 m/s^2
<h3>Force against gravity</h3>
To move the plane upward, the box will move against gravity.

Let's solve for F

<h3>Force towards gravity</h3>
When the force pushes the box down the inclined plane, it moves towards gravity.

The force required to push the box upward is 145.3N and the force required to push the box downward is -109.3N
Learn more on force across an inclined plane here;
brainly.com/question/11888124