Answer:
Hertz is the answer for this question
Answer:
a = 1,008 10⁻³ m / s²
Explanation:
For this exercise, let's use the kinematic relations of accelerated motion
v² = v₀² - 2 a x
The negative sign is because the acceleration is opposite to the speed, the final speed is zero
0 = v₀² - 2 a x
a = v₀² / 2x
Let's reduce the magnitudes to the SI system
x = 2.4mm (1m / 10³mm) = 2.4 10⁻³m
Let's calculate
a = 2.2²/2 2.4 10⁻³
a = 1,008 10⁻³ m / s²
Give you something to compare your results with. It's always nice to be able to see what changes have been made to the original, even if it's not technically the original (I know that was worded weird, I just don't know how else to explain it.) Hope this helped!
Answer:
39.40 MeV
Explanation:
<u>Determine the minimum possible Kinetic energy </u>
width of region = 5 fm
From Heisenberg's uncertainty relation below
ΔxΔp ≥ h/2 , where : 2Δx = 5fm , Δpc = hc/2Δx = 39.4 MeV
when we apply this values using the relativistic energy-momentum relation
E^2 = ( mc^2)^2 + ( pc )^2 = 39.4 MeV ( right answer ) because the energy grows quadratically in nonrelativistic approximation,
Also in a nuclear confinement ( E, P >> mc )
while The large value will portray a Non-relativistic limit as calculated below
K = h^2 / 2ma^2 = 1.52 GeV
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wtjfavyw