Answer:
<em>293.99 g </em>
OR
<em>0.293 Kg</em>
Explanation:
Given data:
Lattice energy of Potassium nitrate (KNO3) = -163.8 kcal/mol
Heat of hydration of KNO3 = -155.5 kcal/mol
Heat to absorb by KNO3 = 101kJ
To find:
Mass of KNO3 to dissolve in water = ?
Solution:
Heat of solution = Hydration energy - Lattice energy
= -155.5 -(-163.8)
= 8.3 kcal/mol
We already know,
1 kcal/mol = 4.184 kJ/mole
Therefore,
= 4.184 kJ/mol x 8.3 kcal/mol
= 34.73 kJ/mol
Now, 34.73 kJ of heat is absorbed when 1 mole of KNO3 is dissolved in water.
For 101 kJ of heat would be
= 101/34.73
= 2.908 moles of KNO3
Molar mass of KNO3 = 101.1 g/mole
Mass of KNO3 = Molar mass x moles
= 101.1 g/mole x 2.908
= 293.99 g
= 0.293 kg
<em><u>293.99 g potassium nitrate has to dissolve in water to absorb 101 kJ of heat. </u></em>
Answer: 2HCO + 4O → H2 + 2CO3
Explanation: Oxomethyl + Oxygen = Dihydrogen + Carbon Trioxide
Reaction Type: SINGLE REPLACEMENT
***If you found my answer helpful, please give me the brainliest, please give a nice rating, and the thanks ( heart icon :) ***
Answer:
1400000 cm
Explanation:
14 km equals to 1400000 cm (14 km = 1400000 cm)
PLEASE MARK ME AS THE BRAINLIEST... ;)
Answer:
Clear Communication
Explanation:
Clear communication in key when working with a team on a project. Without communication things get messy. Having clear communication with your team mates helps to prevent miscommunication, issues in planning and completing the project, and more. Clear communication can also help you to hear everybody out to come out with the best version of your project and to prevent fighting that would take up time that you could be working.
Molecular equation
Hg₂(NO₃)₂ (aq) + KI(aq) ⇒Hg₂I₂(s) + 2KNO₃(aq)
Total Ionic equation
Hg²⁺(aq) + 2NO³⁻(aq) + 2K⁺aq) ⇒Hg₂I₂(s) + 2K⁺(aq) + NO³⁻ (aq)
Net Ionic equation
Hg²⁺(aq) + 2I⁻(aq) ⇒ Hg₂I₂(s)
<h3>What is the molecular equation?</h3>
Sometimes, a balanced equation is all that is used to refer to a chemical equation. Any ionic substances or acids are represented using their chemical formulas as neutral compounds in a molecular equation. Each substance's state is described in parenthesis after the formula. A complete ionic equation also contains the spectator ions, whereas a net ionic equation just displays the chemical species that are involved in a reaction.
The steps listed below can be used to determine the net ionic equation for a specific reaction:
Include the states of each chemical in the balanced molecular equation for the reaction.
To know more about the molecular equation, visit:
brainly.com/question/14286552
#SPJ4