Answer:
Options d and e
Explanation:
The pendulum which will be set in motion are those which their natural frequency is equal to the frequency of oscillation of the beam.
We can get the length of the pendulums likely to oscillate with the formula;

where g=9.8m/s
ω= 2rad/s to 4rad/sec
when ω= 2rad/sec

L = 2.45m
when ω= 4rad/sec

L = 9.8/16
L=0.6125m
L is between 0.6125m and 2.45m.
This means only pendulum lengths in this range will oscillate.Therefore pendulums with length 0.8m and 1.2m will be strongly set in motion.
Have a great day ahead
Answer: 3 A
Explanation:
According to<u> Ohm's law</u>:
Where:
is the voltage
is the resistance of the resistor
is the electric current (the value we want to find)
Isolating
:


Finally:

The initial velocity of the ball is 55.125 m/s.
<h3>Initial velocity of the ball</h3>
The initial velocity of the ball is calculated as follows;
During upward motion
h = vi - ¹/₂gt²
h = vi - 0.5(9.8)(3²)
h = vi - 44.1 ----------------- (1)
During downward motion
h = vi + ¹/₂gt²
h = 0 + 0.5(9.8)(1.5)²
h = 11.025 ----------- (2)
solve (1) and (2) together, to determine the initial velocity of the ball
11.025 = vi - 44.1
vi = 11.025 + 44.1
vi = 55.125 m/s
Thus, the initial velocity of the ball is 55.125 m/s.
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
<span>Light can travel in a vacuum, and ... strange as it may seem ...
its speed is always the same, even if the light source is moving. </span>