The answer will be D because the reaction is what's first(A) and then it is the product that comes out.
Answer:
67.4 % of C₉H₈O₄
Explanation:
To make titrations problems we know, that in the endpoint:
mmoles of acid = mmoles of base
mmoles = M . volume so:
mmoles of acid = 20.52 mL . 0.1121 M
mmoles of acid = mg of acid / PM (mg /mmoles)
Let's determine the PM of aspirin:
12.017 g/m . 9 + 1.00078 g/m . 8 + 15.9994 g/m . 4 = 180.1568 mg/mmol
mass (mg) = (20.52 mL . 0.1121 M) . 180.1568 mg/mmol
mass (mg) = 414.4 mg
We convert the mass to g → 414.4 mg . 1g / 1000mg = 0.4144 g
We determine the % → (0.4144 g / 0.615 g) . 100 = 67.4 %
The number of electrons in an atom's outermost valence shell governs its bonding behaviour. Elements whose atoms have the same number of valence electrons are grouped together in the Periodic Table. ... Nonmetals tend to attract additional valence electrons to form either ionic or covalent bonds.
Answer:
Final temperature = 83.1 °C
Explanation:
Given data:
Mass of concrete = 25 g
Specific heat capacity = 0.210 cal/g. °C
Initial temperature = 25°C
Calories gain = 305 cal
Final temperature = ?
Solution:
Q = m. c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
305 cal = 25 g ×0.210 cal/g.°C × T2 - 25°C
305 cal = 5.25cal/°C × T2 - 25°C
305 cal / 5.25cal/°C = T2 - 25°C
58.1 °C = T2 - 25°C
T2 = 58.1 °C + 25°C
T2 = 83.1 °C
It takes exactly 500 seconds for the sun's radiation to reach the earth or about 8 minutes (8.333333333333... to be exact). Just divide 150 million km by 300,000 km/s. Hope this helps