If the patient has to take 2 tablets every 8 hours for 7 days.
24/8=3 3*2=6
this means that he patient will have to take 6 tablets every day.
6*7=42 And the patient must take 42 tablets in all 7 days
Hope this helps! :)
Answer:
"3. Energy can either be destroyed or created. Its goes from one form to another."
Explanation:
The third answer choice, "3. Energy can either be destroyed or created. Its goes from one form to another.
" is related to the Law of Conservation of Energy from thermodynamics. Is it not a postulate of the Kinetic Molecular Theory.
<u>"1. Average Kinetic Energy of the system is a measure of the temperature of the system."</u>
Postulate of Kinetic Molecular Theory 
- The average kinetic energy of the system is measured by its temperature and nothing else
<u>"2. Energy is conserved in the collisions between gas molecules.."</u>
Postulate of Kinetic Molecular Theory 
- All collisions between gas molecules are perfectly elastic, meaning no energy is lost
<u>"3. Energy can either be destroyed or created. Its goes from one form to another.</u>
<u />
NOT a Postulate of Kinetic Molecular Theory
- Related to Conservation of Energy from thermodynamics
<u>"4. Gases travel in straight line until they collide with other gas molecules"</u>
Postulate of Kinetic Molecular Theory 
- All gas molecules will travel in a straight line until they collide with other gas molecules or some object (e.g. a container)
Answer:
Explanation:
1 = A
Sublimation is the process where by a sample is heated to pass through solid phase to gaseous phase without the intermittent liquid phase. Example of substance that sublime is camphor.
2 = D
Decantantion
5 = F
Filtration is the process a liquid from solid using a porous material. This technique requires a set up and a good porous material eg filter paper.
6 = B
This technique is to separate a mixture of solids by converting them from solid phase to gaseous phase since they sublime.
3 = deposition.
The answer isn't in the option but deposition is the process of substance in gaseous phase to change into solid state without passing through liquid phase. Deposition is the opposite of sublimation.
4 = E
Answer: In 1860s, Norwegian scientists C. M. Guldberg and P. Waage noted a peculiar relationship between the amounts of reactants and products in an equilibrium. Today, we call this observation the law of mass action. It relates the amounts of reactants and products at equilibrium for a chemical reaction. For a general chemical reaction occurring in solution, aA + bB ⇄ cC + dD the equilibrium constant, also known as Keq, is defined by the following expression: Keq = [C]c/[D]d where [A] is the molar concentration of species A at equilibrium, and so forth. The coefficients a, b, c, and d in the chemical equation become exponents in the expression for Keq. The Keq is a characteristic numerical value for a given reaction at a given temperature. That is, each chemical reaction has its own characteristic Keq. The concentration of each reactant and product in a chemical reaction at equilibrium is related; the concentrations cannot be random values, but they depend on each other. The numerator of the expression for Keq has the concentrations of every product (however many products there are), while the denominator of the expression for Keq has the concentrations of every reactant, leading to the common products over reactants definition for the Keq. Let us consider a simple example. Suppose we have this equilibrium: A ⇄ B .There is one reactant, one product, and the coefficients on each are just 1. The Keq expression for this equilibrium is Keq = [B]/[A]. Exponents of 1 on each concentration are understood. Suppose the numerical value of Keq for this chemical reaction is 2.0. If [B] = 4.0 M, then [A] must equal 2.0 M so that the value of the fraction equals 2.0: Keq = [B]/[A] = 4.0/2.0 =2.0 .By convention, the units are understood to be M and are omitted from the Keq expression. Suppose [B] were 6.0 M. For the Keq value to remain constant (it is, after all, called the equilibrium constant), then [A] would have to be 3.0 M at equilibrium: Keq = [B]/[A] = 60/3.0= 2.0 .If [A] were not equal to 3.0 M, the reaction would not be at equilibrium, and a net reaction would occur until that ratio was indeed 2.0. At that point, the reaction is at equilibrium, and any net change would cease. However, that the forward and reverse reactions do not stop because chemical equilibrium is dynamic.