First, calculate how long the ball is in midair. This will depend only on the vertical displacement; once the ball hits the ground, projectile motion is over. Since the ball is thrown horizontally, it originally has no vertical speed.
t = time vi = initial vertical speed = 0m/s g = gravity = -9.8m/s^2 y = vertical displacement = -45m
y = .5gt^2 [Basically, in this equation we see how long it takes the ball to fall 45m] -45m = .5 (-9.8m/s^2) * t^2 t = 3.03 s
Now we know that the ball is midair for 3.03s. Since horizontal speed is constant we can simply use:
x = horizontal displacement v = horizontal speed = 25m/s t = time = 3.03s
x = v*t x = 25m/s * 3.03s = 75.76 m Thus, the ball goes about 75 or 76 m from the base of the cliff.
Gravitational energy is a form of potential energy because it is dependent on the mass of an object and needs to be calculated for the specific object.
Which element is less reactive, an element whose atoms have seven valence electrons or an element whose atoms have eight valence electrons? Why?<span>an element with 8 valence electrons because it doesn't require any additional electrons to become stable</span>
Answer:
1.90×10²⁰ Electrons
Explanation:
From the question,
Q = It.................... Equation 1
Where Q = charge flowing through the wire, I = current, t = time
Given: I = 4.35 A, t = 7.00 s
Substitute these values into equation 1
Q = 4.35(7.00)
Q = 30.45 C.
But,
1 electron contains 1.6×10⁻¹⁹ C
therefore,
30.45 C = 30.45/1.6×10⁻¹⁹ electrons
= 1.90×10²⁰ Electrons
All of the observations except "powerful gravitational field" are consistent with the current theory of black holes.
The gavitational field of a black hole is thought to be no different than that of an ordinary star with the same mass.