Answer:
average speed is 60km/h
Explanation:
you sum up the speed attained in each distance covered and divide it by 2 to get your answer
Let R be radius of Earth with the amount of 6378 km h = height of satellite above Earth m = mass of satellite v = tangential velocity of satellite
Since gravitational force varies contrariwise with the square of the distance of separation, the value of g at altitude h will be 9.8*{[R/(R+h)]^2} = g'
So now gravity acceleration is g' and gravity is balanced by centripetal force mv^2/(R+h):
m*v^2/(R+h) = m*g' v = sqrt[g'*(R + h)]
Satellite A: h = 542 km so R+h = 6738 km = 6.920 e6 m g' = 9.8*(6378/6920)^2 = 8.32 m/sec^2 so v = sqrt(8.32*6.920e6) = 7587.79 m/s = 7.59 km/sec
Satellite B: h = 838 km so R+h = 7216 km = 7.216 e6 m g' = 9.8*(6378/7216)^2 = 8.66 m/sec^2 so v = sqrt(8.32*7.216e6) = 7748.36 m/s = 7.79 km/sec
Answer:
3.066×10^21 photons/(s.m^2)
Explanation:
The power per area is:
Power/A = (# of photons /t /A)×(energy / photon)
E/photons = h×c/(λ)
photons /t /A = (Power/A)×λ /(h×c)
photons /t /A = (P/A)×λ/(hc)
photons /t /A = (680)×(678×10^-9)/(6.63×10^-34)×(3×10^-8)
= 3.066×10^21
Therefore, the number of photons per second per square meter 3.066×10^21 photons/(s.m^2).
Answer:
distance = 33.124 meters
Explanation:
To solve this question, we will use one of the equations of motion which is:
s = ut + 0.5a * t^2
where:
s is the distance that we want to get
u is the initial velocity = 0
a is the acceleration due to gravity = 9.8 m/sec^2
t is the time = 2.6 sec
Substitute with the givens in the equation to get the distance as follows:
s = ut + 0.5a * t^2
s = (0)(2.6) + 0.5(9.8)(2.6)^2
s = 33.124 meters
Hope this helps :)