Answer:
d=360 miles
Donna lives 360 miles from the mountains.
Explanation:
Conceptual analysis
We apply the formula to calculate uniform moving distance[
d=v*t Formula (1)
d: distance in miles
t: time in hours
v: speed in miles/hour
Development of problem
The distance Donna traveled to the mountains is equal to the distance back home, equal to d,then,we pose the kinematic equations for d, applying formula 1:
travel data to the mountains: t₁= 8 hours , v=v₁
d= v₁*t₁=8*v₁ Equation (1)
data back home : t₂=4hours , v=v₂=v₁+45
d=v₂*t₂=(v₁+45)*4=4v₁+180 Equation (2)
Equation (1)=Equation (2)
8*v₁=4v₁+180
8*v₁-4v₁=180
4v₁=180
v₁=180÷4=45 miles/hour
we replace v₁=45 miles/hour in equation (1)
d=8hour*45miles/hour
d=360 miles
Answer:
T_ww = 43,23°C
Explanation:
To solve this question, we use energy balance and we state that the energy that enters the systems equals the energy that leaves the system plus losses. Mathematically, we will have that:
E_in=E_out+E_loss
The energy associated to a current of fluid can be defined as:
E=m*C_p*T_f
So, applying the energy balance to the system described:
m_CW*C_p*T_CW+m_HW*C_p*T_HW=m_WW*C_p*T_WW+E_loss
Replacing the values given on the statement, we have:
1.0 kg/s*4,18 kJ/(kg°C)*25°C+0.8 kg/s*4,18 kJ/(kg°C)*75°C=1.8 kg/s*4,18 kJ/(kg°C)*T_WW+30 kJ/s
Solving for the temperature Tww, we have:
(1.0 kg/s*4,18 kJ/(kg°C)*25°C+0.8 kg/s*4,18 kJ/(kg°C)*75°C-30 kJ/s)/(1.8 kg/s*4,18 kJ/(kg°C))=T_WW
T_WW=43,23 °C
Have a nice day! :D
Answer:
At a sunny day at the beach, the top of the sand is warm. The radiation from the Sun heats up the surface of the sand, but sand has a low thermal conductivity, so this energy stays at the surface of the sand.
Based on the given statement or reasoning above made by a student, what makes her reasoning incorrect is the part where she mentioned that "if they had not been built, she would not be exposed to radioactivity." This is definitely false. What makes this incorrect is that background radiation is a kind of radiation that is emitted by the sun, stars, and other bodies outside the universe and therefore, no one can escape from this. Hope this helps.