F_P + F_Q = M g
F_P = M g - F_Q
Torque, or moment of force:
∑ M_P = 0
∑ M_P = M g L - F_Q · 3 L
0 = M g L - 3 F_Q L / : L
0 = M g - 3 F_Q
3 F_Q = M g
F_Q = M g /3
Finally:
F_P = M g - M g/3
F_P = 4 M g / 3
Which picture are you talking about?
1.1 A. An electric oven with a resistance of 201Ω and a voltage of 220V drwa a current of 1.1 A.
The easiest way to solve this problem is using the Ohm's Law I = V/R.
An electric oven has R = 201Ω, and a drop of voltage V = 220v, solve using I = V/R:
I = 220V / 201Ω
I = 1.09 A ≅ 1.1 A
Answer:
Explanation:
Given
Height of ceiling is 
Initial speed of Putty 
Speed of Putty just before it strike the ceiling is given by
where v=final velocity
u=initial velocity
a=acceleration
s=displacement



time taken by putty to reach the ceiling



