Answer:
T = 712.9 N
Explanation:
First, we will find the speed of the wave:
v = fλ
where,
v = speed of the wave = ?
f = frequency = 890 Hz
λ = wavelength = 0.1 m
Therefore,
v = (890 Hz)(0.1 m)
v = 89 m/s
Now, we will find the linear mass density of the wire:

where,
μ = linear mass density of wie = ?
m = mass of wire = 90 g = 0.09 kg
L = length of wire = 1 m
Therefore,

μ = 0.09 kg/m
Now, the tension in wire (T) will be:
T = μv² = (0.09 kg/m)(89 m/s)²
<u>T = 712.9 N</u>
Answer:
1. Hydrogen
Atomic # = 1
Atomic Mass = 1.00794 ( If you round it it's 1.008 )
# of protons = 1
# of neutrons = none
# of electrons = 1
Depending on which type of motor you're talking about, but the first 3 are true. A stronger magnetic field in a DC motor will slow it down but increase its torque.
The amount of current in the motor will control the magnetic fields and therefore affect the speed (and torque). In an induction motor, the rotational speed is given by

where f is the line frequency and p is the number of poles. Thus fewer poles makes it go faster.
According to KE = (3/2)kT
reducing temperature, in KELVIN, by half, average KE is reduced by half.