Answer:
4.90 x 10 24 atoms
Explanation:
the 24 is the exponent for the 10
Answer:
2.57 g of H₂
Solution:
The Balance Chemical Equation is as follow,
N₂ + 3 H₂ → 2 NH₃
According to Balance equation,
34.06 g (2 moles) NH₃ is produced by = 6.04 g (3 moles) of H₂
So,
14.51 g of NH₃ will be produced by = X g of H₂
Solving for X,
X = (14.51 g × 6.04 g) ÷ 34.06 g
X = 2.57 g of H₂
Answer is: the approximate freezing point of a 0.10 m NaCl solution is -2x°C.
V<span>an't
Hoff factor (i) for NaCl solution is approximately 2.
</span>Van't Hoff factor (i) for glucose solution is 1.<span>
Change in freezing point from pure solvent to
solution: ΔT = i · Kf · m.
Kf - molal freezing-point depression constant for water is 1,86°C/m.
m - molality, moles of solute per
kilogram of solvent.
</span>Kf and molality for this two solutions are the same, but Van't Hoff factor for sodium chloride is twice bigger, so freezing point is twice bigger.
Explanation:
In the context, a vial which is used in store medical samples is filled with water at room temperature. And the vial is kept on a cold water. Also a water bag containing warm water is kept near the vial.
The cold water kept at the bottom of the vial is having lower kinetic energy while warm water will have higher kinetic energy than the others. Since the water in the vial is at room temperature and it is in touch with the cold blue water, the water in the vial will loose or give its temperature to the cold blue water through conduction as well as convection process since temperature always flows from a hot body towards the cold body.
On the other hand, the warm water placed next tot he vial will give its temperature to the atmosphere.
True would be your answer