Answer:
1. -8.20 m/s²
2. 73.4 m
3. 19.4 m
Explanation:
1. Apply Newton's second law to the car in the y direction.
∑F = ma
N − mg = 0
N = mg
Apply Newton's second law to the car in the x direction.
∑F = ma
-F = ma
-Nμ = ma
-mgμ = ma
a = -gμ
Given μ = 0.837:
a = -(9.8 m/s²) (0.837)
a = -8.20 m/s²
2. Given:
v₀ = 34.7 m/s
v = 0 m/s
a = -8.20 m/s²
Find: Δx
v² = v₀² + 2aΔx
(0 m/s)² = (34.7 m/s)² + 2 (-8.20 m/s²) Δx
Δx = 73.4 m
3. Since your braking distance is the same as the car in front of you, the minimum safe following distance is the distance you travel during your reaction time.
d = v₀t
d = (34.7 m/s) (0.56 s)
d = 19.4 m
Answer:
ans 5
Explanation:
hope it's help It seems to me
Answer:
I just took the quiz and got 100% when choosing A.Conservation. Hope this helps:)
Answer:
(a) Wavelength is 0.436 m
(b) Length is 0.872 m
(c) 11.518 m/s
Solution:
As per the question:
The eqn of the displacement is given by:
(1)
n = 4
Now,
We know the standard eqn is given by:
(2)
Now, on comparing eqn (1) and (2):
A = 1.22 cm
K = 

where
A = Amplitude
K = Propagation constant
= angular velocity
Now, to calculate the string's wavelength,
(a) 
where
K = propagation vector


(b) The length of the string is given by:


(c) Now, we first find the frequency of the wave:



Now,
Speed of the wave is given by:


The cost of boiling 500cm3 of water using the 3kW kettle is 1.35 P.
<h3>
Cost of electricity for 3 kW kettle</h3>
The cost is calculated as follows;
1 unit = 9p /kWh
Total energy consumed by 3 kW kettle, E = P x t
where;
- P is power (kW)
- t is time in (hr)
E = 3 kW x (3 mins/60 mins/hr)
E = 0.15 kWh
Energy cost = 9 p/kWh x 0.15 kWh = 1.35 P
Thus, the cost of boiling 500cm3 of water using the 3kW kettle is 1.35 P.
Learn more about energy cost here: brainly.com/question/13795167
#SPJ1