Answer:
GE = ME -
, which agrees with option C in your list.
Explanation:
The definition of Mechanical Energy (ME) of a system is the addition of the gravitational potential energy (GE) plus the kinetic energy (KE) of the system:
ME = GE + KE
Given that the KE is:
,
solving for GE in the formula above gives:
GE = ME - KE = ME -
, which agrees with option C
The answer is already in the blank for, its was greater
I don't think you mean 'criteria'. I think you mean three occurrences or
observations that indicate the presence of acceleration.
They are:
-- an object is speeding up
-- an object is slowing down
-- the direction of an object's motion is changing .
Any one of these changes is acceleration.
There's a single term that covers them all. It is "change in velocity".
In a parallel circuit, the total resistance calculated from the individual resistances is computed from the formula: 1/Rt = 1/R1 + 1/R2. substituting R1 and R2, then
1/Rt = 1/7 + 1/49
1/Rt = 1/6.125 = 1/ 49/8
Rt = 49/8 <span>Ω
The total resistance hence is </span>49/8 Ω
Answer:
<h2>a) Time elapsed before the bullet hits the ground is 0.553 seconds.</h2><h2>b)
The bullet travels horizontally 110.6 m</h2>
Explanation:
a) Consider the vertical motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Displacement, s = 1.5 m
Substituting
s = ut + 0.5 at²
1.5 = 0 x t + 0.5 x 9.81 xt²
t = 0.553 s
Time elapsed before the bullet hits the ground is 0.553 seconds.
b) Consider the horizontal motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 200 m/s
Acceleration, a = 0 m/s²
Time, t = 0.553 s
Substituting
s = ut + 0.5 at²
s = 200 x 0.553 + 0.5 x 0 x 0.553²
s = 110.6 m
The bullet travels horizontally 110.6 m