Answer:
a)
Y0 = 0 m
Vy0 = 15 m/s
ay = -9.81 m/s^2
b) 7.71 m
c) 3.06 s
Explanation:
The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards
Y(0) = 0 m
Vy(0) = 15 m/s
ay = -9.81 m/s^2 (negative because it points down)
Since acceleration is constant we can use the equation for uniformly accelerated movement:
Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2
To find the highest point we do the first time derivative (this is the speed:
V(t) = Vy0 + a * t
We equate this to zero
0 = Vy0 + a * t
0 = 15 - 9.81 * t
15 = 9.81 * t
t = 0.654 s
At this time it will have a height of:
Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m
The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.
0 = Y0 + Vy0 * t + 1/2 * a * t^2
0 = 0 + 15 * t - 1/2 * 9.81 t^2
0 = 15 * t - 4.9 * t^2
0 = t * (15 - 4.9 * t)
t1 = 0 This is the moment it jumped into the air
0 = 15 - 4.9 * t2
15 = 4.9 * t2
t2 = 3.06 s This is the moment when it falls again.
3.06 - 0 = 3.06 s
Iron is a magnetic metal, and it is essential to the Earth's magnetic field!
Essentially it "records" (stores the information, maintains) the direction and orientation of the magnetic field.
Among others, the magnetic field protects the Earth from dangerous cosmic rays.
Answer:
Explanation:
The change is as follows
P₁ V₁ to 3P₁, V₁ ( constt volume ) --- first process
3P₁,V₁ to 3P₁ , 5V₁ ( constt pressure ) ---- second process
In the first process Temperature must have been increased 3 times . So if initial temperature is T₁ then final temperature will be 3 T₁
P₁V₁ = n R T₁ , n is no of moles of gas enclosed.
nRT₁ = P₁V₁
Heat added at constant volume = n Cv ( 3T₁ - T₁)
= n x 5/3 R X 2T₁ ( for diatomic gas Cv = 5/3 R)
= 10/3 x nRT₁
= 10/3x P₁V₁
In the second process, Temperature must have been increased 5 times . So if initial temperature is 3T₁ then final temperature will be 15 T₁
Heat added at constant pressure in second case
= n Cp ( 15T₁ - 3T₁)
= n x 7/3 R X 12T₁ ( For diatomic gas Cp = 7/3 R)
= 28 x nRT₁
= 28 P₁V₁
Answer:
The spring was compressed the following amount:

Explanation:
Use conservation of energy between initial and final state, considering that the surface id frictionless, and there is no loss in thermal energy due to friction. the total initial energy is the potential energy of the compressed spring (by an amount
), and the total final energy is the addition of the kinetic energies of both masses:



Explanation:
Waste management (or waste disposal) includes the processes and actions required to manage waste from its inception to its final disposal.[1] This includes the collection, transport, treatment and disposal of waste, together with monitoring and regulation of the waste management process and waste-related laws, technologies, economic mechanisms. Proper management of waste is important for building sustainable and liveable cities, but it remains a challenge for many developing countries and cities. A report found that effective waste management is relatively expensive, usually comprising 20%–50% of municipal budgets. Operating this essential municipal service requires integrated systems that are efficient, sustainable, and socially supported.[6] A large portion of waste management practices deal with municipal solid waste (MSW) which is the bulk of the waste that is created by household, industrial, and commercial activity.[7] Measures of waste management include measures for integrated techno-economic mechanisms[8] of a circular economy, effective disposal facilities, export and import control[9][10] and optimal sustainable design of products that are produced.