Answer: 2.068*
m
Explanation: According to work energy-theorem , the workdone in accelerating the electron equals the energy it would give off in terms of light.
workdone= qV
energy = hc/λ
q=magnitude of an electronic charge= 1.602*
h= planck constant = 6.626*
c= speed of light =2.998* 
v= potential difference= 6*
λ= wavelength=unknown
by making λ subject of formulae we have that
λ= 
λ = 6.626*
* 2.998*
/ 1.602*
* 6*
λ = 
by doing the necessary calculations, we have that
λ = 2.068*
m
Comets orbit the sun just like planets do. Except a comet usually has a very elongated orbit. Thanks to the laws of gravity comets obey the same laws. A comets orbit takes it very close to the sun and then far away again.
Answer:
So the conclusion is that in presence of air net force acting downward reduces for feather and hence falls slower than coin. But in absence of air resistance, net downward force is just equal to force due to gravity which is same for both coin and feather and hence they fall down at the same rate.
Answer:

Explanation:
The electrostatic attraction between the nucleus and the electron is given by:
(1)
where
k is the Coulomb's constant
Ze is the charge of the nucleus
e is the charge of the electron
r is the distance between the electron and the nucleus
This electrostatic attraction provides the centripetal force that keeps the electron in circular motion, which is given by:
(2)
where
m is the mass of the electron
v is the speed of the electron
Combining the two equations (1) and (2), we find

And solving for v, we find an expression for the speed of the electron:

Answer:
scalar,magnitude
Explanation:
scalar is an example of length/distance
magnitude is the length of a vector