The initial position of the object was found to be 134.09 m.
<u>Explanation:</u>
As displacement is the measure of difference between the final and initial points. In other words, we can say that displacement can be termed as the change in the position of the object irrespective of the path followed by the object to change the path. So
Displacement = Final position - Initial position.
As the final position is stated as -55.25 meters and the displacement is also stated as -189.34 meters. So the initial position will be
Initial position of the object = Final position-Displacement
Initial position = -55.25 m - (-189.34 m) = -55.25 m + 189.34 m = 134.09 m.
Thus, the initial position for the object having a displacement of -189.34 m is determined as 134.09 m.
Answer:
D) Since the stars would move from East to West just as the Sun and Moon do.
Answer:
3 L
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 2 L
Initial pressure (P₁) = 0.75 atm
Final pressure (P₂) = 0.5 atm
Final volume (V₂) =?
Using the Boyle's law equation, the new volume (i.e final volume) of the Ne gas can be obtained as:
Initial volume (V₁) = 2 L
Initial pressure (P₁) = 0.75 atm
Final pressure (P₂) = 0.5 atm
Final volume (V₂) =?
P₁V₁ = P₂V₂
0.75 × 2 = 0.5 × V₂
1.5 = 0.5 × V₂
Divide both side by 0.5
V₂ = 1.5 / 0.5
V₂ = 3 L
Thus, the new volume of the Ne gas is 3 L
The answer is B. Nutrients.
Answer:
6.53 m/s²
Explanation:
Let m₁ = 5 kg and m₂ = 10 kg. The figure is attached and free body diagrams of the objects are also attached.
Both objects (m₁ and m₂) have the same magnitude of acceleration(a). Let g be the acceleration due to gravity = 9.8 m/s². Hence:
T = m₁a (1)
m₂g - T = m₂a (2)
substituting T = m₁a in equation 2:
m₂g - m₁a = m₂a
m₂a + m₁a = m₂g
a(m₁ + m₂) = m₂g
a = m₂g / (m₁ + m₂)
a = (10 kg * 9.8 m/s²) / (10 kg + 5 kg) = 6.53 m/s²
Both objects have an acceleration of 6.53 m/s²