The highest atom economy
2CO + O₂ ⇒ 2CO₂
<h3>Further explanation</h3>
Given
The reaction for the production of CO₂
Required
The highest atom economy
Solution
In reactions, there are sometimes unwanted products that can be said to be a by-product or a waste product. Meanwhile, the desired product can be said to be a useful product, which can be shown as the atom economy
of the reaction
the higher the atomic economy value of a reaction, the smaller the waste/ byproducts produced, so that less energy is wasted
The general formula:
Atom economy = (mass of useful product : mass of all reactants/products) x 100
<em>or
</em>
Atom economy = (total formula masses of useful product : total formula masses of all reactants/products) x 100
So a reaction that only produces one product will have the highest atomic value, namely the reaction in option C
Answer:
The pH value of the mixture will be 7.00
Explanation:
Mono and disodium hydrogen phosphate mixture act as a buffer to maintain pH value around 7. Henderson–Hasselbalch equation is used to determine the pH value of a buffer mixture, which is mathematically expressed as,
![pH=pK_{a} + log(\frac{[Base]}{[Acid]})](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%20%2B%20log%28%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D%29)
According to the given conditions, the equation will become as follow
![pH=pK_{a} + log(\frac{[Na_{2}HPO_{4} ]}{[NaH_{2}PO_{4}]})](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%20%2B%20log%28%5Cfrac%7B%5BNa_%7B2%7DHPO_%7B4%7D%20%5D%7D%7B%5BNaH_%7B2%7DPO_%7B4%7D%5D%7D%29)
The base and acid are assigned by observing the pKa values of both the compounds; smaller value means more acidic. NaH₂PO₄ has a pKa value of 6.86, while Na₂HPO₄ has a pKa value of 12.32 (not given, but it's a constant). Another more easy way is to the count the acidic hydrogen in the molecular formula; the compound with more acidic hydrogens will be assigned acidic and vice versa.
Placing all the given data we obtain,


Answer:
kilograms
Explanation:
hope this helps, pls mark brainliest :D
Answer:
The Lewis dot diagram is supposed to have dots on each side. What's incorrect is that there isn't a dot on the bottom, only the left and right side and the top. What's correct about this is that there are 5 outer valence electrons, and they correctly put 5 dots, even though they're in the wrong place.
Explanation:
The green and black symbols refer to atoms, that make up the molecule of water, more specifically you can say that the 2 Hydrogen atoms are the black ones found outside, while the central atom, that is also green would be oxygen.