Ionic molecules have higher boiling point than covalent molecules.
So that leaves Na2SO4 and NaCl.
The ionic molecule with higher charge will have higher boiling point.
Na2SO4 have ions with charge +-2.
NaCl have ions with charge +-1.
So the answer is C.
The continent rest on massive slabs of rocks called tectonics
Average atomic mass is the weighted average atomic masses with regard to the relative abundance of the isotopes
average atomic mass of Li = relative abundance of Li-6 x mass of Li-6 + relative abundance of Li-7 x mass of Li-7
average atomic mass of Li = (7.42% x 6.0151 a.m.u) + (92.58% x 7.0160 a.m.u)
= 0.446 + 6.495
= 6.941 amu
average atomic mass of Li is 6.941 amu
3.0 × 10¹¹ RBC's (or) 3E11 RBC's
Solution:
Step 1: Convert mm³ into L;
As,
1 mm³ = 1.0 × 10⁻⁶ Liters
So,
0.1 mm³ = X Liters
Solving for X,
X = (0.1 mm³ × 1.0 × 10⁻⁶ Liters) ÷ 1 mm³
X = 1.0 × 10⁻⁷ Liters
Step 2: Calculate No. of RBC's in 5 Liter Blood:
As given
1.0 × 10⁻⁷ Liters Blood contains = 6000 RBC's
So,
5.0 Liters of Blood will contain = X RBC's
Solving for X,
X = (5.0 Liters × 6000 RBC's) ÷ 1.0 × 10⁻⁷ Liters
X = 3.0 × 10¹¹ RBC's
Or,
X = 3E11 RBC's
Answer:
Answer of question a is 345J.
Explanation:
In question a following is given in data:
-mass of iron (m) = 10.0 g
-temperature (ΔT) = final temperature- initial temperature= 100-25= 75 degree Celsius
-Specific Heat capacity of iron (c)= 0.46J/g°C.
Heat (Q)=?
Solution:
Formula for Heat is :
Q=m x c x ΔT
Q= 10 x 0.46 x 75
Q= 345 J.
so, 345 joules of heat is needed to increase the temperature of 10 grams of iron.
- From the above formula all other questions can easily be solved from the same procedure.