First convert 12.0g of Na to moles using the grams to moles conversation and you get about .5219 moles (I didn't use significant figures). Divide that number by 3 because that is the coefficient of Na and you will get about .17398 moles, which is how many moles are in 1. Since Al has a coefficient of 1, .17398 woild be your final answer
Answer:
B. The ocean floor is featureless.
Explanation:
I'm pretty sure it's the entertainment industry.
Answer:
1 mole of a gas would occupy 22.4 Liters at 273 K and 1 atm
Explanation:
An ideal gas is a set of atoms or molecules that move freely without interactions. The pressure exerted by the gas is due to the collisions of the molecules with the walls of the container. The ideal gas behavior is at low pressures, that is, at the limit of zero density. At high pressures the molecules interact and intermolecular forces cause the gas to deviate from ideality.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= 1 atm
- V= 22.4 L
- n= ?
- R= 0.082

- T=273 K
Reemplacing:
1 atm* 22.4 L= n* 0.082
*273 K
Solving:

n= 1 mol
Another way to get the same result is by taking the STP conditions into account.
The STP conditions refer to the standard temperature and pressure. Pressure values at 1 atmosphere and temperature at 0 ° C (or 273 K) are used and are reference values for gases. And in these conditions 1 mole of any gas occupies an approximate volume of 22.4 liters.
<u><em>1 mole of a gas would occupy 22.4 Liters at 273 K and 1 atm</em></u>
Answer:
Melting
Explanation:
Once heat is added it will turn to a liquid