<span>Star a is more distant and is approximately 5 times as far away as star b
Parallax is the change in angle that one must do in order to observe the same object from different locations. The further away an object is, the smaller the parallax is. As the angles approach zero, the trig functions tend to be fairly linear. And 0.1 arc seconds and 0.02 arc seconds are close enough to zero for this to hold true.
Since the parallax for star a is smaller than the parallax for star b, it is the more distant star. And since 0.1 divided by 0.02 = 5, it is approximately 5 times further away than star b.</span>
Answer:
Mixing a milkshake
Explanation:
Becuse it’s physics becuse your using muscle and moving it and changing it by force.
Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by
where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find
The wavelength of the standing wave is instead twice the length of the string:
So the speed of the wave is
And the time the pulse takes to reach the shop is the distance covered divided by the speed:
Answer:
a) Therefore 2.6km is greater than 2.57km.
Statement A is greater than statement B.
b) Therefore 5.7km is equal to 5.7km
Statement A is equal to statement B
Explanation:
a) Statement A : 2.567km to two significant figures.
2.567km 2. S.F = 2.6km
Statement B : 2.567km to three significant figures.
2.567km 3 S.F = 2.57km
Therefore 2.6km is greater than 2.57km.
Statement A is greater than statement B.
b) statement A: (2.567 km + 3.146km) to 2 S.F
(2.567km + 3.146km) = 5.713km to 2 S.F = 5.7km
Statement B : (2.567 km, to two significant figures) + (3.146 km, to two significant figures).
2.567km to 2 S.F = 2.6km
3.146km to 2 S.F = 3.1km
2.6km + 3.1km = 5.7km
Therefore 5.7km is equal to 5.7km
Statement A is equal to statement B
The answer would be A, as B refers to conduction and C and D refer to radiation. Convection is the transfer of different temperature currents, i.e, A