A. The correctly balanced equation is that in which the number of atoms of a certain element at the left-hand side is similar to that in the right hand side or the reactant side and product side, respectively. From the given equation, the answer would be,
C. Cl2 + 2NaI --> 2NaCl + I2
B. In the given chemical reaction above, heat is emitted such that it appears in the product side of the equation. Hence, this is an example of a combustion reaction.
C. Similar with the reasoning in letter A, the answer to this item is,
B. 2H2 + O2 --> 2H2O
<span>The inner core is liquid and moving.</span>
Answer:
202.8m
Explanation:
Given that A pirate fires his cannon parallel to the water but 3.5 m above the water. The cannonball leaves the cannon with a velocity of 120 m/s. He misses his target and the cannonball splashes into the briny deep.
First calculate the total time travelled by using the second equation of motion
h = Ut + 1/2gt^2
Let assume that u = 0
And h = 3.5
Substitute all the parameters into the formula
3.5 = 1/2 × 9.8 × t^2
3.5 = 4.9t^2
t^2 = 3.5/4.9
t^2 = 0.7
t = 0.845s
To know how far the cannonball travel, let's use the equation
S = UT + 1/2at^2
But acceleration a = 0
T = 2t
T = 1.69s
S = 120 × 1.69
S = 202.834 m
Therefore, the distance travelled by the cannon ball is approximately 202.8m.
Answer:
c. 0.02 C and 4 J
Explanation:
Applying,
Q = CV................ Equation 1
Where Q = Charge, C = Capacitance of the capacitor, V = Voltage.
From the question,
Given: C = 50 μF = 50×10⁻⁶ F, V = 400 V
Substitute these values into equation 1
Q = (50×10⁻⁶)(400)
Q = 0.02 C.
Also Applying
E = CV²/2............. Equation 2
Where E = Energy stored.
Therefore,
E = (50×10⁻⁶ )(400²)/2
E = 4 J
Hence the right option is c. 0.02 C and 4 J