Answer:
Nuclear fusion produces elements that are heavier than helium.
Explanation:
Answer:
m
Explanation:
= slit width = 0.1 mm = 0.1 x 10⁻³ m
= wavelength of monochromatic light = 500 nm = 500 x 10⁻⁹ m
= Distance of the screen = 10 m
= Spacing between successive minima
Spacing between successive minima is given as

Inserting the values given

m
The tank has a volume of
, where
is its height and
is its radius.
At any point, the water filling the tank and the tank itself form a pair of similar triangles (see the attached picture) from which we obtain the following relationship:

The volume of water in the tank at any given time is

and can be expressed as a function of the water level alone:

Implicity differentiating both sides with respect to time
gives

We're told the water level rises at a rate of
at the time when the water level is
, so the net change in the volume of water
can be computed:

The net rate of change in volume is the difference between the rate at which water is pumped into the tank and the rate at which it is leaking out:

We're told the water is leaking out at a rate of
, so we find the rate at which it's being pumped in to be


(5 bulbs) x (25 watt/bulb) x (6 hour/day) x (30 day/month) =
(5 x 25 x 6 x 30) watt-hour/month =
22,500 watt-hour/month .
The most common unit of electrical energy used for billing purposes
is the 'kilowatt-hour' = 1,000 watt-hours .
22,500 watt-hour/month = <em>22.5 kWh/month</em>.
(22.5 kWh/month) x (1.50 Rs/kWh) = <em>33.75 Rs / month
</em>
Answer:
Wavelength,
Explanation:
The energy of the electron in a hydrogen atom can be calculated from the Bohr formula as :
.............(1)
Where
R is the Rydberg constant
n is the number of orbit
We need to find the wavelength of the line in the absorption line spectrum of hydrogen caused by the transition of the electron from an orbital with to an orbital with n₁ = 2 to an orbital with n₂ = 3.
Equation (1) can be re framed as :



or

So, the the wavelength of the line in the absorption line spectrum is 657 nm. Hence, this is the required solution.