Explanation:
After some time t the current does not passing through the circuit
=>so the back emf is zero
=>here the inductor opposes decay of the circuit
- Ldi/dt = Ri
di/dt = - R/Li
di/i = - R/Ldt
now we applying the integration on both sides
log i=-R/Lt+C
here t=0=>i=io
Log io=C
=>Log i=-R/L*t + Log io
logi-Log io=-R/L*t
Log[i/io]=-R/L*t
i/io=e^-Rt/L
i=ioe^-Rt/L
the option D is correct
You may have a cold if you do not feel well, depends on the symptoms
Answer
given,
diameter,d₁ = 7.5 cm
d₂ = 4.5 cm
P₁ = 32 kPa
P₂ = 25 kPa
Assuming, we have calculation of flow in the pipe
using continuity equation
A₁ v₁ = A₂ v₂
π r₁² v₁ = π r₂² v₂
Applying Bernoulli's equation
v₂ = 4.01 m/s
fluid flow rate
Q = A₂ V₂
Q = π (0.0225)² x 4.01
Q = 6.38 x 10⁻³ m³/s
flow in the pipe is equal to 6.38 x 10⁻³ m³/s