Answer:

Explanation:
Since the object is under a circular motion, according to Newton's second law, when the object is at the top of the circle we have:

Where
is the centripetal force and is given by:

Replacing and solving for T:

<h2>The temperature of the air is 66.8° C</h2>
Explanation:
From the Newton's velocity of sound relationship , the velocity of sound is directly proportional to the square root of temperature .
In this case The velocity of sound = frequency x wavelength
= 798 x 0.48 = 383 m/sec
Suppose the temperature at this time = T K
Thus 383 ∝
I
The velocity of sound is 329 m/s at 273 K ( given )
Thus 329 ∝
II
Dividing I by II , we have
= 
or
= 1.25
and T = 339.8 K = 66.8° C
Answer:
s=62.5m
Explanation:
Use the equation v²=u²+2as, where v is the final velocity, u is the initial velocity, a is the acceleration and s is the distance.
0²=25²+2(-5)s
10s=625
s=62.5m
Answer:

Explanation:
Mass of the kid 23.7 kg.


We need to find the acceleration of the kid,
We know that, Parallel force acted on the kid at an angle is
F = m × g × sinθ (F = ma)
m × a = m × g × sinθ
Now, substitute the given values in the above formula to find acceleration of the kid,

23.7 × a = 232.26 × 0.733
23.7 × a = 170.24


