m = Mass of the refrigerator to be moved to third floor = 136 kg
g = Acceleration due to gravity by earth on the refrigerator being moved = 9.8 m/s²
h = Height to which the refrigerator is moved = 8 m
W = Work done in lifting the object
Work done in lifting the object is same as the gravitational potential energy gained by the refrigerator. hence
Work done = Gravitation potential energy of refrigerator
W = m g h
inserting the values
W = (136) (9.8) (8)
W = 10662.4 J
Answer:
40.0⁰
Explanation:
The formula for calculating the magnetic flux is expressed as:
where:
is the magnetic flux
B is the magnetic field
A is the cross sectional area
is the angle that the normal to the plane of the loop make with the direction of the magnetic field.
Given
A = 0.250m²
B = 0.020T
= 3.83 × 10⁻³T· m²
3.83 × 10⁻³ = 0.020*0.250cosθ
3.83 × 10⁻³ = 0.005cosθ
cosθ = 0.00383/0.005
cosθ = 0.766
θ = cos⁻¹0.766
θ = 40.0⁰
<em>Hence the angle normal to the plane of the loop make with the direction of the magnetic field is 40.0⁰</em>
Answer:
Nitrogen and oxygen are by far the most common; dry air is composed of about 78% nitrogen (N2) and about 21% oxygen (O2). Argon, carbon dioxide (CO2), and many other gases are also present in much lower amounts; each makes up less than 1% of the atmosphere's mixture of gases.
Answer:
x = 5[km]
Explanation:
We must convert the time from minutes to hours.
![t=30[min]*\frac{1h}{60min}= 0.5[h]\\](https://tex.z-dn.net/?f=t%3D30%5Bmin%5D%2A%5Cfrac%7B1h%7D%7B60min%7D%3D%200.5%5Bh%5D%5C%5C)
We know that speed is defined as the relationship between space and time.

where:
x = space [m]
t = time = 0.5 [h]
v = velocity [m/s]
Now replacing:
![x = 10[\frac{km}{h} ]*0.5[h]\\x=5[km]](https://tex.z-dn.net/?f=x%20%3D%2010%5B%5Cfrac%7Bkm%7D%7Bh%7D%20%5D%2A0.5%5Bh%5D%5C%5Cx%3D5%5Bkm%5D)