Answer:
The magnitude of the average frictional force on the block is 2 N.
Explanation:
Given that.
Mass of the block, m = 2 kg
Initial velocity of the block, u = 10 m/s
Distance, d = 50 m
Finally, it stops, v = 0
Let a is the acceleration of the block. It can be calculated using third equation of motion. It can be given by :



The frictional force on the block is given by the formula as :
F = ma

|F| = 2 N
So, the magnitude of the average frictional force on the block is 2 N. Hence, this is the required solution.
Answer:
You are pulled towards that building. At the same time, that building is pulled towards you. Neither object creates enough gravitational force to really do anything. That is why you never notice any affect by either body, (you and a building).
Explanation:
You will surely get attracted towards the building.But it takes a lot of time depending on their masses.
This happens only when you are away from earth with that building.
Both of you will get attracted to it
if a third party with mass more than you or building is with you.
If it is on the earth.. Then the gravity between you and the building is negligible compared to the earth.Hence you will not get attracted towards the building in this case.
Data:
The charge of a body depends on the amount of electrons it gains or loses. Q = n * e, where "Q" is charge, "n" is the number of plus or minus electrons, and "e" is the fundamental charge of an electron

<span>. To know if the body has gained or lost, we look at the signal of its charge, remembering that the electron is negative. The charge of the body is 4 μC (positive), so there is a lack of electrons!
Q = 4 </span>μC →



<span>
We have:
</span>





True, recycling allows products to be reused which saves alot the natural resources that are used.
There’s nothing to answer to