Answer:
<em>0.44 m/s^2</em>
Explanation:
initial velocity = 0 (since the child starts from rest)
distance covered by the child = 2 m (the length of the slide)
time taken = 3 sec
acceleration of the child = ?
using Newton's equation of motion
s =
where s is the distance covered by the child
u is the initial velocity
a is the acceleration
t is the time spent
substituting values, we have
2 = 0(3) +
2 = 9a/2
4 = 9a
a = 4/9 = <em>0.44 m/s^2</em>
Answer:
Radiology plays a huge role in disease management by giving physicians more options, tools, and techniques for detection and treatment. Diagnostic imaging allows for detailed information about structural or disease-related changes. With the ability to diagnose during the early stages, patients may be saved.
Explanation:
The energy that generates wind on an individual basis originates with
one's habitual diet. On a world-wide basis, it comes from the sun.
Answer: If there is a higher friction, the opposition force is higher so that it can reduce our speed. So, a factor that affects friction is the roughness or smoothness of the surface of the object. In comparison of the table with the fabric, the fabric will have a more opposition force. As the surface of the fabric is usually rougher than the surface of a smooth table. As there is more friction on a fabric, we will feel more opposition force on our finger tip.
Hope it helped! :>
Answer:
μsmín = 0.1
Explanation:
- There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
- This friction force has a maximum value, that can be written as follows:
where μs is the coefficient of static friction, and Fn is the normal force,
perpendicular to the wall and aiming to the center of rotation.
- This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
- This force has the following general expression:
where ω is the angular velocity of the riders, and r the distance to the
center of rotation (the radius of the circle), and m the mass of the
riders.
Since Fc is actually Fn, we can replace the right side of (2) in (1), as
follows:
- When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:
- (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
- Cancelling the masses on both sides of (4), we get:
- Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:
- Replacing by the givens in (5), we can solve for μsmín, as follows: