X - the score he must get

He must get at least 92 points.
Answer:
A) 68.33%
B) (234, 298)
Step-by-step explanation:
We have that the mean is 266 days (m) and the standard deviation is 16 days (sd), so we are asked:
A. P (250 x < 282)
P ((x1 - m) / sd < x < (x2 - m) / sd)
P ((250 - 266) / 16 < x < (282 - 266) / 16)
P (- 1 < z < 1)
P (z < 1) - P (-1 < z)
If we look in the normal distribution table we have to:
P (-1 < z) = 0.1587
P (z < 1) = 0.8413
replacing
0.8413 - 0.1587 = 0.6833
The percentage of pregnancies last between 250 and 282 days is 68.33%
B. We apply the experimental formula of 68-95-99.7
For middle 95% it is:
(m - 2 * sd, m + 2 * sd)
Thus,
m - 2 * sd <x <m + 2 * sd
we replace
266 - 2 * 16 <x <266 + 2 * 16
234 <x <298
That is, the interval would be (234, 298)
Answer:
Final cost = 0.9328y
Step-by-step explanation:
Assume,
Original price = y
Given:
Discount = 22%
Sales tax = 6%
Computation:
Sales tax will be added on sale value
So,
Sales price = y[100%-22%]
Sales price = 0.88y
Price after sales tax :
Final cost = 0.88y[100% + 6%]
Final cost = 0.88y[106%]
Final cost = 0.9328y
Answer:
gvjjggrhwu ehsi38202 wisbebwjise jwiwooq the ans is the tahat fusne jiow sjxixksbsbs dbx