Answer:
Mass = 90.28 g
Explanation:
Given data:
Mass of Ca(OH)₂ = ?
Volume of solution= 1.5 L
Molarity of solution = 0.81 M
Solution:
First of all we will calculate number of moles.
Molarity = number of moles / volume in L
by putting values,
0.81 M = Number of moles / 1.5 L
Number of moles = 0.81 M × 1.5 L
Number of moles = 1.22 mol
Mass of Ca(OH)₂ in gram:
Mass = number of moles × molar mass
Mass = 1.22 mol × 74.09 g/mol
Mass = 90.28 g
I can =335ml
2cans=?
2cans×335ml÷1
= 670ml
Answer:
Mass = 141.6 g
Explanation:
Given data:
Mass of Kr in gram = ?
Volume in L = 9.59 L
Temperature = 46.0°C
Pressure = 4.62 atm
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will convert the temperature.
46.0+273 = 319 K
4.62 atm × 9.59 L = n× 0.0821 atm.L/ mol.K ×319 K
44.3 atm.L = n×26.19 atm.L/ mol
n = 44.3 atm.L / 26.19 atm.L/ mol
n = 1.69 mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 1.69 mol × 83.79 g/mol
Mass = 141.6 g
Answer:
Question: What Is The Correct IUPAC Name For S2F8? X ( ( (I) (IV) Di- Mono- Penta- Tetra- Tri- Hepta- Octa- Hexa- Fluorine Selenide Flourate Sulfide Sodium Sulfate Sulfur Fluoride Hydrate Acid.