Cl is highly electronegative and will actually pull away 1 electron from sodium, forming an ionic bond.
B its viscosity decreases
<h3>
Answer:</h3>
LiOH(aq) +HCl(aq)→ LiCl(aq) + H₂O(l)
Salt formed is LiCl
<h3>
Explanation:</h3>
- Arrhenius acid refers to a substance that ionizes in water to generate protons or hydrogen ions.
- Examples of Arrhenius acid include acids such as HCl, H₂SO₄ and HNO₃.
- A reaction between Lithium hydroxide and an Arrhenius acid such as HCl will yield a salt and water.
That is;
LiOH(aq) +HCl(aq)→ LiCl(aq) + H₂O(l)
- The salt formed is LiCl
- The reaction is an example of neutralization reaction.
The mass fraction of sodium chloride is 0.0625
<h3>What is the mass fraction of sodium chloride in the solution?</h3>
The mass fraction of sodium chloride is the ratio of the mass of sodium chloride to the total mass of the solution.
The mass fraction of sodium chloride is determined as follows;
mass of sodium chloride = 20 g
- mass of water = volume * density
density of water = 1 g/mL
volume of water = 300 mL
mass of water = 300 mL * 1 g/mL
mass of water = 300 g
total mass of solution = 20 + 300 = 320 g
mass fraction of sodium chloride = 20/320
mass fraction of sodium chloride = 0.0625
Learn more about mass fraction at: brainly.com/question/14783710
#SPJ1
Explanation:
The reaction equation will be as follows.

Hence, moles of Na = moles of electron used
Therefore, calculate the number of moles of sodium as follows.
No. of moles = 
=
(as 1 kg = 1000 g)
= 195.65 mol
As, Q =
where F = Faraday's constant
= 
=
mol C
Relation between electrical energy and Q is as follows.
E = 
Hence, putting the given values into the above formula and then calculate the value of electricity as follows.
E = 
= 
= 
As 1 J =
kWh
Hence,
kWh
= 3.39 kWh
Thus, we can conclude that 3.39 kilowatt-hours of electricity is required in the given situation.