
<u>Difference </u><u>between </u><u>Atomic </u><u>mass</u><u>, </u><u>relative </u><u>atomic </u><u>mass </u><u>and </u><u>average </u><u>atomic </u><u>mass</u><u> </u><u>:</u><u>-</u>
<h3><u>Atomic </u><u>Mass </u><u>:</u><u>-</u></h3>
- Atomic mass is the mass of neutrons and protons present in the nucleus of an atom .
- It is always calculated for a single element and having direct value
- For isotopes also, the atomic mass is calculated separately . Example :- <u>Carbon </u><u>1</u><u>2</u><u> </u><u>,</u><u> </u><u>carbon </u><u>1</u><u>3</u><u> </u><u>and </u><u>carbon </u><u>1</u><u>4</u><u> </u><u>have </u><u>different </u><u>atomic </u><u>mass</u><u>. </u>
- The SI unit of Atomic mass is " u" and "amu"
<h3>
<u>Relative </u><u>Atomic </u><u>mass </u><u>:</u><u>-</u></h3>
- Relative atomic mass is mean mass of the atoms of an element which is compared to the 1/12th mass of carbon - 12 .
- Carbon - 12 is taken as a relative when we calculate the relative atomic mass of any element
- For calculating relative atomic mass, we need to know the masses, percentage and abundance of all types of elements
- Relative atomic mass is a dimension less quantity
<h3><u>Average </u><u>Atomic </u><u>Mass </u><u>:</u><u>-</u></h3>
- Average atomic mass is the average mass of an atoms of a particular element by considering it's isotopes
- While we calculate average atomic mass is a standardized number. Whereas, Average atomic mass sometimes varies geologically .
- It also includes percentage, abundance and masses of given element .
- In average atomic mass, We do not compare mean value with the 1/12 mass of carbon - 12
- The unit of Average atomic mass is "Amu" or " u " .
It should remain constant because of the law of conservation of mass and because the flask is sealed no mass will escape
Answer:
287.30 g of FeCO₃
Solution:
The Balance Chemical Equation is as follow,
FeCl₂ + Na₂CO₃ → FeCO₃ + 2 NaCl
Step 1: Calculate Mass of FeCl₂ as,
Molarity = Moles ÷ Volume
Solving for Moles,
Moles = Molarity × Volume
Putting Values,
Moles = 2 mol.L⁻¹ × 1.24 L
Moles = 2.48 mol
Also,
Moles = Mass ÷ M.Mass
Solving for Mass,
Mass = Moles × M.Mass
Putting Values,
Mass = 2.48 mol × 126.75 g.mol⁻¹
Mass = 314.34 g of FeCl₂
Step 2: Calculate Mass of FeCO₃ formed as,
According to equation,
126.75 g (1 mole) FeCl₂ produces = 115.85 g (1 mole) FeCO₃
So,
314.34 g of FeCl₂ will produce = X g of FeCO₃
Solving for X,
X = (314.34 g × 115.85 g) ÷ 126.75 g
X = 287.30 g of FeCO₃
<h2>
brainlyest pleas</h2>
Answer:
with the proton inside the nucleus
Answer:
the hydrogen atom of one water molecule and the lone pair of electrons on an oxygen atom of a neighboring water molecule.