Answer:
Forces acting on an object may be balanced or unbalanced. When the forces acting on an object have <u>equal</u> strength and act in opposite directions, they are <u>balanced</u>. These forces cancel out one another, and the <u>motion</u> of the object does not <u>change</u>. When the forces acting on an object are <u>unbalanced</u>, they do not cancel out one another. An unbalanced force acting on an object results in the object’s motion <u>changing</u>. The object may change its <u>speed</u> (speed up or slow
down), or it may change its <u>direction</u>. <u>Friction</u> is a force that resists the motion or the tendency toward motion between two objects in contact with each other. <u>Gravity</u> is a force that pulls objects toward one another. For example, Earth pulls all objects toward it.
Explanation:
Plasma technology is based on a simple physical principle. Matter changes its state when energy is supplied to it: solids becomes liquid, and liquids becomes gaseous. If even more energy is supplied to a gas, it is ionized and goes into the energy-rich plasma state, the fourth state of matter.ore than 99% of the visible matter in the universe is in the plasma state.
Explanation:
It is known that 1 gram contains 1000 milligrams. And, mathematically we can represent it as follows.
or 
So, when we have to convert grams into milligrams then we simply multiply the digit with 1000. And, if we have to convert a digit from milligrams to grams then we simply divide it by 1000.
Answer:
0.0611M of HNO3
Explanation:
<em>The concentration of the NaOH solution must be 0.1198M</em>
<em />
The reaction of NaOH with HNO3 is:
NaOH + HNO3 → NaNO3 + H2O
<em>1 mole of NaOH reacts per mole of HNO3.</em>
That means the moles of NaOH used in the titration are equal to moles of HNO3.
<em>Moles HNO3:</em>
12.75mL = 0.01275L * (0.1198mol / L) = 0.0015274 moles NaOH = Moles HNO3.
In 25.00mL = 0.025L -The volume of the aliquot-:
0.00153 moles HNO3 / 0.025L =
<h3> 0.0611M of HNO3</h3>
Answer:Static electricity works because objects which are otherwise "neutral" (in other words, objects with no net charge) can be polarized. An electric field, like one caused by a nearby charged object, can cause the charges inside of a neutral object — the protons and electrons — to move around a tiny bit.
Explanation: