Answer:
83.2 W/m^2
Explanation:
The radiation per unit area of a star is directly proportional to the power emitted, which is given by Stefan-Boltzmann law:

where
is the Stefan-Boltzmann constant
A is the surface area
T is the surface temperature
So, we see that the radiation per unit area is proportional to the fourth power of the temperature:

So in our problem we can write:

where
is the power per unit area of the present sun
is the temperature of the sun
is the power per unit area of sun X
is the temperature of sun X
Solving for I2, we find

Your answer is going to be 2m south
They were formed in the nuclear<span> fusion reaction inside older </span><span>stars.
As a star burns, fusion reactions inside its core create heavier elements. Those materials are released when the star dies of old age in an explosion.</span>
Its an electrochemical cell that derives electrical energy from spontaneous redox reactions taking place within the cell.
11.3 Electromagnetic spectrum (ESADK)
EM radiation is classified into types according to the frequency of the wave: these types include, in order of increasing frequency, radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.