Answer:
I_syst = 278.41477 kg.m²
Explanation:
Mass of platform; m1 = 117 kg
Radius; r = 1.61 m
Moment of inertia here is;
I1 = m1•r²/2
I1 = 117 × 1.61²/2
I1 = 151.63785 kg.m²
Mass of person; m2 = 62.5 kg
Distance of person from centre; r = 1.05 m
Moment of inertia here is;
I2 = m2•r²
I2 = 62.5 × 1.05²
I2 = 68.90625 kg.m²
Mass of dog; m3 = 28.3 kg
Distance of Dog from centre; r = 1.43 m
I3 = 28.3 × 1.43²
I3 = 57.87067 kg.m²
Thus,moment of inertia of the system;
I_syst = I1 + I2 + I3
I_syst = 151.63785 + 68.90625 + 57.87067
I_syst = 278.41477 kg.m²
Answer:She would need to first know the weight of the sculpture and what she is going to move it with then she will need to use newton's second law to calculate the amount of force needed to move it
Explanation: I just did the assignment on edgunity
Answer:
The explosive force experienced by the shell inside the barrel is 23437500 newtons.
Explanation:
Let suppose that shells are not experiencing any effect from non-conservative forces (i.e. friction, air viscosity) and changes in gravitational potential energy are negligible. The explosive force experienced by the shell inside the barrel can be estimated by Work-Energy Theorem, represented by the following formula:
(1)
Where:
- Explosive force, measured in newtons.
- Barrel length, measured in meters.
- Mass of the shell, measured in kilograms.
,
- Initial and final speeds of the shell, measured in meters per second.
If we know that
,
,
and
, then the explosive force experienced by the shell inside the barrel is:

![F = \frac{(1250\,kg)\cdot \left[\left(750\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}\right]}{2\cdot (15\,m)}](https://tex.z-dn.net/?f=F%20%3D%20%5Cfrac%7B%281250%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cleft%28750%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D-%5Cleft%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%5Cright%5D%7D%7B2%5Ccdot%20%2815%5C%2Cm%29%7D)

The explosive force experienced by the shell inside the barrel is 23437500 newtons.
Answer:
b
Explanation:
Brownian motion is the random movement of particles in a fluid due to their collisions with other atoms or molecules. ... Brownian motion takes its name from the Scottish botanist Robert Brown, who observed pollen grains moving randomly in water. He described the motion in 1827 but was unable to explain it.