first one is true, there's no net force acting on it thats greater than another or making it unbalanced, if there was the object would be in some kind of motion
All scientist use meters, that way scientist can share information across country without needing to convert the data.
3. is air resistance
4. The large rock
Answer:
85.5 km/h
Explanation:
= time interval for first phase = 14 min =
h = 0.233 h
= time interval for second phase = 46 min =
h = 0.767 h
= average speed for the entire trip = 74 km/h
= average speed in first phase = 36 km/h
= average speed in second phase
= distance traveled in first phase
= distance traveled in first phase
average speed is given as




km/h
Wave speed = frequency * wavelength
Input the numbers into this equation :
Wave speed = 200 * 3
Work it out and you will get the answer :
Wave speed = 600 m/s
Answer:
The equivalent stiffness of the string is 8.93 N/m.
Explanation:
Given that,
Spring stiffness is





According to figure,
and
is in series
We need to calculate the equivalent
Using formula for series


Put the value into the formula


k and
is in parallel
We need to calculate the k'
Using formula for parallel

Put the value into the formula


,k' and
is in series
We need to calculate the equivalent stiffness of the spring
Using formula for series

Put the value into the formula


Hence, The equivalent stiffness of the string is 8.93 N/m.
If you are asking for a proof on having at least 3 dimensions in space, you can find the physical proof anywhere in your daily life activities. Just the fact that solids have volumes is a proof already that we live in a three-dimensional space. We can move forwards, backwards, sidewards and in all other directions possible.
When you go right into detail, the fundamental laws governing these proofs are very technical. They have differential equations to show as proof. It is too detailed to discuss here. The important things is that, these fundamental laws are what explains the science in our basic activities and natural phenomena:
*Gravitation and planetary motion
* Translation, rotation, magnetic field, forces
* Integrals of equations: