Answer:
18.5 m/s
Explanation:
On a horizontal curve, the frictional force provides the centripetal force that keeps the car in circular motion:

where
is the coefficient of static friction between the tires and the road
m is the mass of the car
g is the gravitational acceleration
v is the speed of the car
r is the radius of the curve
Re-arranging the equation,

And by substituting the data of the problem, we find the speed at which the car begins to skid:

Every object has thermal energy (better word than heat, since we associate that with high temperatures). This is actually the molecules vibrating, moving a lot. More thermal energy means more vibrating, and thus also expanding in volume.
Answer:
Initial velocity = 10 m/s
θ = 60°
This is the case of projectile motion
So the horizontal component of velocity 10 m/s = 10 cosθ
u = 10 cosθ
u = 10 cos 60°
u=5 m/s
x= 5 m
So in the horizontal direction
x = u .t
5 = 5 .t
t = 1 sec The vertical component of velocity 10 m/s = 10 sinθ
Vo= 10 sinθ
Vo= 10 sin 60°
Vo = 8.66 m/s
h=3.75 m
So height of robot = 3.75 - 0.75 m
height of robot =3 m
A.gold is the answer. As it's density is 19.32 grams per cubic centimeter which is lot more than the other substances.
It has a 10 electrons. Since it's atomic number is 11 it must have 11 protons. Also, given that it has a +1 charge, it has one less electron than protons since they have equal but opposite charges.
The number of protons is the mass number minus the atomic number = 23-11= 12 neutrons.