Answer:
y = 67.6 feet, y = 114.4/ (22 - 3t)
Explanation:
For this exercise let's use that light travels in a straight line and some trigonometric relationships, the symbols are in the attached diagram
Large triangle Projector up to the screen
tan θ = y / L
For the small triangle. Projector up to the person
tan θ = y₀ / (L-d)
The angle is the same, so we equate the two equations
y₀ / (L -d) = y / L
y = y₀ L / (L-d)
The distance from the screen (d), we look for it with kinematics
v = d / t
d = v t
we replace
y = y₀ L / (L - v t)
y = 5.2 22 / (22 - 3 t)
y = 114.4 (22 - 3t)⁻¹
This is the equation of the shadow height change as a function of time
For the suggested distance the shadow has a height of
y = 114.4 / (22-13)
y = 67.6 feet
If you go to high you’ll run out of oxygen and possibly be blown off due to high winds.
Answer:
D. gravitational potential energy
Explanation:
Answer:
96046 Ns.
Explanation:
We shall represent velocity in vector form considering east direction as + ve x axis and north as + y direction.
40 km/h in the east
V₁ = 40 i
V₂ = 50j
momentum p₁ = mV₁
= 1500 X 40 i
= 60000 i
Momentum p₂ = mV₂
= 1500 X 50j
= 75000 j
Change in momentum
p₂ - p₁
75000j - 60000i
Magnitude of change
= 
= 96046 Ns.