Answer:
hii there
The correct answer is option ( C ) reduced air pressure
Explanation:
hope it helps
have a nice day :)
Answer:
The materials with which the lab group are to use for the model includes;
i) A candle
ii) A match
iii) A strip of cloth
iv) Tongs
v) A metal can
The processes the lab group are to model are;
a) Conduction
b) Convection
c) Radiation
The procedure the lab group can use to do this is outlined as follows;
1) Tie the piece of cloth around the metal can with a strip of the cloth extending past the bottom of the can
2) Hold the metal can in with the aid of the tongs
3) Light the candle with the match
4) Place the metal can over over the burning candle so that it does not touch the flame
5) While holding the can with the tongs, ensure that the strip of cloth hanging by the side of the can does not come in contact with the flame
Conduction
Conduction heat transfer is observed by the rising temperature of the tongs that is in the contact with the can
Convection
Convection heat transfer is observed by the rising temperature of the can that is placed in the path of the rising convection current from the candle wax
Radiation
Radiation heat transfer is observed by the shrinking of the piece of cloth placed beside the candle flame
Explanation:
The law of conservation of energy states that energy is neither created nor destroyed; the amount remains constant. For example, a form of energy-thermal energy, or heat, occurs by convection or conduction
Answer:
0.014s
Explanation:
Given parameters:
mass of golf ball = 0.059kg
force applied = 290N
velocity = 69m/s
initial velocity = 0m/s
Unknown:
Time of contact = ?
Solution;
We know that momentum is the quantity of motion of body possess;
Momentum = mass x velocity
Momentum = 0.059 x 69 = 4.1kgm/s
Also; impulse is the effect of the force acting on a body;
impulse = force x time = momentum
So;
Force x time = momentum
Time =
=
= 0.014s
Answer:
a) 
b) 
Explanation:
Given that:
- mass of rod,

- length of the rod,

<u>(a)</u>
<u>Moment of inertia of rod about its center and perpendicular to the rod is given as:</u>



(b)
<u>Moment of inertia on bending the rod to V-shape of 60 degree angle and axis being perpendicular to the plane of V at the vertex.</u>
<em>We treat it as two rod with axis of rotation at the end and perpendicular to the plane of rotation. </em>
<em>So, the mass and the length of the rod will become half of initial value.</em>


![I=2[ \frac{1}{3}\times 0.2\times 0.3^2]](https://tex.z-dn.net/?f=I%3D2%5B%20%5Cfrac%7B1%7D%7B3%7D%5Ctimes%200.2%5Ctimes%200.3%5E2%5D)
