Answer:
All trenches must have access/egress - A.
Answer:
the answer is A.) -1 * 10^3[N]
Explanation:
The solution consists of two steps, the first step is using the following kinematic equation:
![v=v_{i} +a*t\\where:\\v=final velocity [m/s]\\v_{i}=initial velocity [m/s]\\a=acceleration[m/^2]\\t=time[s]\\](https://tex.z-dn.net/?f=v%3Dv_%7Bi%7D%20%2Ba%2At%5C%5Cwhere%3A%5C%5Cv%3Dfinal%20velocity%20%5Bm%2Fs%5D%5C%5Cv_%7Bi%7D%3Dinitial%20velocity%20%5Bm%2Fs%5D%5C%5Ca%3Dacceleration%5Bm%2F%5E2%5D%5C%5Ct%3Dtime%5Bs%5D%5C%5C)
The initial velocity is 10 [m/s], and the final velocity is zero because the car stops in 0.5[s].
Replacing:
![0=10+a*(0.5)\\a=-20[m/s^2]](https://tex.z-dn.net/?f=0%3D10%2Ba%2A%280.5%29%5C%5Ca%3D-20%5Bm%2Fs%5E2%5D)
Now in the second part, we need to use the second law of Newton, this law relates the forces with the acceleration of a body.
In the moment when the car stops suddenly the driver will feel the force of the seatbelt acting in the opposite direction of the movement.
![F=m*a\\F=50[kg]*(-20[m/s^2])\\units\[kg]*[m/s^2]=[N]\\F=-1000[N] or -1*10^{3} [N]](https://tex.z-dn.net/?f=F%3Dm%2Aa%5C%5CF%3D50%5Bkg%5D%2A%28-20%5Bm%2Fs%5E2%5D%29%5C%5Cunits%5C%5Bkg%5D%2A%5Bm%2Fs%5E2%5D%3D%5BN%5D%5C%5CF%3D-1000%5BN%5D%20or%20-1%2A10%5E%7B3%7D%20%5BN%5D)
The minus sign means that the force is acting in the opposite direction of the movement.
Answer:
107 m
Explanation:
Convert km/h to m/s:
128.4 km/h × (1000 m / km) × (1 h / 3600 s) = 35.67 m/s
Distance = rate × time
d = 35.67 m/s × 3.0 s
d = 107 m
Answer:
t = 5.89 s
Explanation:
To calculate the time, we need the radius of the pulley and the radius of the sphere which was not given in the question.
Let us assume that the radius of the pulley (
) = 0.4 m
Let the radius of the sphere (r) = 0.5 m
w = angular speed = 150 rev/min = (150 × 2π / 60) rad/s = 15.708 rad/s
Tension (T) = 20 N
mass (m) = 3 kg each


Substituting values:
