Answer:
The probability that a part was manufactured on machine A is 0.3
Step-by-step explanation:
Consider the provided information.
It is given that Half of a set of parts are manufactured by machine A and half by machine B.
P(A)=0.5
Let d represents the probability that part is defective.
Ten percent of all the parts are defective.
P(d) = 0.10
Six percent of the parts manufactured on machine A are defective.
P(d|A)=0.06
Now we need to find the probability that a part was manufactured on machine A, and given that the part is defective
:



Hence, the probability that a part was manufactured on machine A is 0.3
Answer:
FD≈25.94.. rounded = 26
Step-by-step explanation:
FD²=12²+(4x+11)²
FD²=144+16x²+88x+121
FD²=265+16x²+88x
also
FD²=12²+(13x-16)²
FD²=144+169x²-416x+256
FD²=400+169x²-416x
thus
265+16x²+88x = 400+169x²-416x
16x²-169x²+88x+416x+265-400 = 0
-153x²+504x-135 = 0
we will solve this quadratic equation by suing the quadratic formula to find x
x=(-504±sqrt(504²-4(-153)(-135)))/2(-153)
x=(-504±
)/2(-153)
x=(-504±
)/-306
x=(-504±
)/-306
x=(-504±414)/-306
x=(-504+414)/-306 and x=(-504-414)/-306
x=-90/-306 and x=-918/-306
x= 5/17 , 3
substituting x by the roots we found
check for 5/17:
4x+11 = 4×(5/17)+11 = (20/17)+11 = (20+187)/17 = 207/17 ≈ 12.17..
13x-16 = 13×(5/17)-16 = (65/17)-16 = (65-272)/17 = -207/17 ≈ -12.17..
check for 3:
4x+11 = 4×3+11 = 12+11 = 23
13x-16 = 13×3-16 = 23
thus 3 is the right root
therfore
ED=23 and CD=23
FD²=FE²+ED² or FD²=FC²+CD²
FD²=12²+23²
FD²=144+529
FD²=673
FD=√673
FD≈25.94.. rounded = 26
Ones place.
(I would appreciate if you vote brainiest answer)
To solve this problem you must apply the proccedure shown below:
You must switch the variables, and then, you must solve for
, as following:

Therefore, as you can see, the answer is: 
Step-by-step explanation:
0 10
0-6
this is the answer. I am sure