Answer:
I = 
we see the intensity decreases with the inverse of the distance squared
Explanation:
Intensity is defined as power per unit area,
I = P / A
in this case we have that the sound is emitted in a spherical form therefore the area is
A = 4 pi r2
therefore the intensity is
I =
as we see the intensity decreases with the inverse of the distance squared
Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:

where
is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows

or

which means
(1)
so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2)
Therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse:

Answer:
Time, t = 10 seconds
Explanation:
Given the following data;
Mass = 10kg
Force = 10N
Final velocity = 10m/s
Initial velocity = 0m/s
To find the time;
First of all, we would find the acceleration of the box.
Force = mass * acceleration
10 = 10 * acceleration
Acceleration = 10/10 = 1m/s²
Now, we can find the time by using the first equation of motion;
V = U + at
10 = 0 + 1t
10 = t
Time, t = 10 seconds
Therefore, it will take 10 seconds for the box to come to a complete stop.