Answer:
I think the answer is C because I know
Answer:
there are approximately n ≈ 10²² moles
Explanation:
Since the radius of the earth is approximately R=6378 km= 6.378*10⁶ m , then the surface S of the earth would be
S= 4*π*R²
since the water covers 75% of the Earth's surface , the surface covered by water Sw is
Sw=0.75*S
the volume for a surface Sw and a depth D= 3 km = 3000 m ( approximating the volume through a rectangular shape) is
V=Sw*D
the mass of water under a volume V , assuming a density ρ= 1000 kg/m³ is
m=ρ*V
the number of moles n of water ( molecular weight M= 18 g/mole = 1.8*10⁻² kg/mole ) for a mass m is
n = m/M
then
n = m/M = ρ*V/M = ρ*Sw*D/M = 0.75*ρ*S*D/M = 3/4*ρ*4*π*R² *D/M = 3*π*ρ*R² *D/M
n=3*π*ρ*R² *D/M
replacing values
n=3*π*ρ*R² *D/M = 3*π*1000 kg/m³*(6.378*10⁶ m)² *3000 m /(1.8*10⁻² kg/mole) = 3*π*6.378*3/1.8 * 10²⁰ = 100.18 * 10²⁰ ≈ 10²² moles
n ≈ 10²² moles
A chemical substance has the characteristics that it cannot be separated by physical methods. Seawater and milk can be separated by sedimentation, and air has different components depending on other aspects (such as elevation). Only ammonia is a substance. (thus it can have a formula: NH<span>3)</span>
Answer:
Heating the system
Explanation:
According to the principle of Le Chatelier, for a system at equilibrium, a specific disturbance would make the equilibrium shift toward the direction which minimizes such a disturbance.
Since we wish to shift the equilibrium to the left, this means we wish to increase the concentration of products, as an excess in their concentration would make the products react and produce more reactants in order to lower the excess concentration of products.
Since heat is also a product, an increase in heat would shift the equilibrium toward the left, as this would consume the excess of heat by producing the reactants.
The layer of atmosphere that MOST planes fly in is called the troposphere.