The most suitable answer is C becuase they would gain two elctrons to atain that stable OCTET thus becoming a anion with a charge of -2 and by virtue oxidation states of -2. There is however an exception with oxygen in two cases. But I still remain that the best answer would be C
Answer:
- <u><em>Ratio of the mass carbon that combines with 1.00 g of oxygen in compound 2 to the mass of carbon that combines with 1.00 g of oxygen in compound 1 = 2</em></u>
Explanation:
First, detemine the mass of oxygen in the two samples by difference:
- mass of oxygen = mass of sample - mass of carbon
Item Compound 1 Compound 2
Sample 80.0 g 80.0 g
Carbon 21.8 g 34.3 g
Oxygen: 80.0 g - 21.8g = 58.2 g 80.0 g - 34.3 g = 45.7 g
Second, determine the ratios of the masses of carbon that combine with 1.00 g of oxygen:
- For each sample, divide the mass of carbon by the mass of oxygen determined above:
Sample Mass of carbon that combines with 1.00 g of oxygen
Compound 1 21.8 g / 58.2 g = 0.375
Compound 2 34.3 g / 45.7 g = 0.751
Third, determine the ratio of the masses of carbon between the two compounds.
- Divide the greater number by the smaller number:
- Ratio = 0.751 / 0.375 = 2.00 which in whole numbers is 2
This would be 8.010 * 10^-2
Molar mass Pb = 207.2 g/mol
1 mole Pb ------------- 207.2
? mole Pb ------------ 9.51 x 10³
moles = 9.51 x 10³ * 1 / 207.2
moles = 9.51 x 10³ / 207.2
= 45.89 moles
hope this helps!