Answer:
The answer is below
Explanation:
The amplitude decreases by 2% during each oscillation. Hence the decrease in amplitude can be represented by an exponential decay in the form:
y = abˣ; where x ad y are variables, a is the initial value and b is the factor.
Let y represent the amplitude after x oscillations. Since the initial amplitude is 10 cm, hence:
a = 10 cm, b = 2% = 0.02.
Therefore:
y = 10(0.02)ˣ
The amplitude after 25 oscillations is gotten by substituting x = 25 into the equation. Hence:
y = 10(0.02)²⁵
y= 3.355 * 10⁻⁴² cm
The amplitude after 25 oscillations is 3.355 * 10⁻⁴² cm
Answer:

Explanation:
The frequency of a simple pendulum is given by:

where
g is the acceleration of gravity
L is the length of the pendulum
Calling
the length of the first pendulum and
the acceleration of gravity at the location of the first pendulum, the frequency of the first pendulum is

The length of the second pendulum is 0.4 times the length of the first pendulum, so

while the acceleration of gravity experienced by the second pendulum is 0.9 times the acceleration of gravity experienced by the first pendulum, so

So the frequency of the second pendulum is

Therefore the ratio between the two frequencies is

<span>good observations ensure accurate data and valid
conclusions.</span>
I would say 2 but I don’t want to get you wrong