Answer:
1. a. increase
2. Because the electron has a negative charge its electric potential energy does not decrease as one might expect, but increases instead.
Explanation:
Lets first consider the relation between the electric field and electric potential.
E = -ΔV/Δs
As this equation indicates that the electric field is due to the change in potential and change in the the position of charge. Electric field is directed towards the decreasing potential and the electron moves in the opposite direction of the electric field where potential increases. Thats why the best explanation is that the electron has a negative charge it moves towards the positive region where the electric potential energy increases.
This is a defective, misleading question, and should never be asked in a Physics class.
There is no such thing as the force due to the impact.
If you know how long it takes the clam to stop once it begins to hit the dirt,
then you can calculate the impulse transferred to it, and tease a force out
of that. But the question doesn't give us the time.
It depends on the material of the surface. Was the clam dropped onto dirt ?
Into a dumpster ? Onto grass ? Concrete ? Styrofoam ? Mud ? The answer
is different in each case, and we still need to know the short length of time
AFTER it first encountered whatever surface brought it to rest.
I would kick this question back to the Physics teacher. It's meaningless,
and the longer you try to work on it, the more nonsense you'll plant into
your head that'll need to be dug out later.
Answer:The distance and magnitude of displacement are sometimes equal." Jafar is correct. The distance traveled and the magnitude of displacement are equal if and only if the path is a straight line in one direction.
Explanation:
Answer:
According to the travellers, Alpha Centauri is <em>c) very slightly less than 4 light-years</em>
<em></em>
Explanation:
For a stationary observer, Alpha Centauri is 4 light-years away but for an observer who is travelling close to the speed of light, Alpha Centauri is <em>very slightly less than 4 light-years. </em>The following expression explains why:
v = d / t
where
- v is the speed of the spaceship
- d is the distance
- t is the time
Therefore,
d = v × t
d = (0.999 c)(4 light-years)
d = 3.996 light-years
This distance is<em> very slightly less than 4 light-years. </em>
About 21c because it also depends on the weather outside