Answer:
- The magnitude of the vector
is 107.76 m
Explanation:
To find the components of the vectors we can use:

where
is the magnitude of the vector, and θ is the angle over the positive x axis.
The negative x axis is displaced 180 ° over the positive x axis, so, we can take:






Now, we can perform vector addition. Taking two vectors, the vector addition is performed:

So, for our vectors:


To find the magnitude of this vector, we can use the Pythagorean Theorem



And this is the magnitude we are looking for.
Answer:
The inlet velocity is 21.9 m/s.
The mass flow rate at reach exit is 1.7 kg/s.
Explanation:
Given that,
Mass flow rate = 2 kg/s
Diameter of inlet pipe = 5.2 cm
Fifteen percent of the flow leaves through location (2) and the remainder leaves at (3)
The mass flow rate is

We need to calculate the mass flow rate at reach exit
Using formula of mass



We need to calculate the inlet velocity
Using formula of velocity

Put the value into the formula


Hence, The inlet velocity is 21.9 m/s.
The mass flow rate at reach exit is 1.7 kg/s.
Momentum is conserved in a collision. Momentum is mass*velocity, so you can find your answer by calculating initial and final momentums and setting them equal to each other.
15kg * 3.50 m/s + 9kg * 2.35 m/s = 73.65 kg m/s
73.65 = 9 * 2.8 + 15x
solve for x
x= 3.23
The final velocity is 3.23 m/s
Motion energy is the sum of potential and kinetic energy in an object that is used to do work.