<span>1.7 rad/s
The key thing here is conservation of angular momentum. The system as a whole will retain the same angular momentum. The initial velocity is 1.7 rad/s. As the person walks closer to the center of the spinning disk, the speed will increase. But I'm not going to bother calculating by how much. Just remember the speed will increase. And then as the person walks back out to the rim to the same distance that the person originally started, the speed will decrease. But during the entire walk, the total angular momentum remained constant. And since the initial mass distribution matches the final mass distribution, the final angular speed will match the initial angular speed.</span>
Answer:
please the answer below
Explanation:
(a) If we assume that our origin of coordinates is at the position of charge q1, we have that the potential in both points is

k=8.89*10^9
For both cases we have

(b) by replacing this values of r in the expression for V we obtain

hope this helps!!
The extrapolated temperature is used to define the maximum temperature of the mixture relatively than the highest recorded temperature in which the conclusion will effect in a higher specific heat value. Heat is bound to escape from whatever apparatus is using, therefore it is needed to account for the loss of the heat that does not go into increasing the temperature of the mixture.
Answer:
0.010 m
Explanation:
So the equation for a pendulum period is:
where L is the length of the pendulum. In this case I'll use the approximation of pi as 3.14, and g=9.8 m\s. So given that it oscillates once every 1.99 seconds. you have the equation:

Evaluate the multiplication in front

Divide both sides by 6.28

Square both sides

Multiply both sides by m/s^2 (the s^2 will cancel out)
Now now let's find the length when it's two seconds

Divide both sides by 6.28

Square both sides

Multiply both sides by 9.8 m/s^2 (s^2 will cancel out)

So to find the difference you simply subtract
0.984 - 0.994 = 0.010 m
Answer:
v
Image result for What is the length of the hypotenuse of the triangle below
One way to solve this is to use Pythagorean theorem: the square of one leg of triangle plus square of other leg of the triangle equals c the hypotenuse (longest side of triangle). You might see this as the formula a^2 + b^2 = c^2, where a and b are the legs and c is the hypotenuse.Nov 23, 2016
Explanation: