If you're moving, then you have kinetic energy.
If you're not at the bottom yet, then you still have
some potential energy left.
This can be solved using momentum balance, since momentum is conserved, the momentum at point 1 is equal to the momentum of point 2. momentum = mass x velocity
m1v1 = m2v2
(0.03kg x 900 m/s ) = 320(v2)
v2 = 27 / 320
v2 = 0.084 m/s is the speed of the astronaut
Answer:
the boat will either break or go alot faster
Explanation:
I think the correct answer from the choices listed above is option D. One advantage of using electromagnets in devices would be that electromagnets can <span>easily be turned on and off. Hope this answers the question. Have a nice day.</span>
Answer: 0.076 m/s
Explanation:
Momentum is conserved:
m v = (m + M) V
(0.111 kg) (55 m/s) = (0.111 kg + 80. kg) V
V = 0.076 m/s
After catching the puck, the goalie slides at 0.076 m/s.