Answer:
(a) the high of a hill that car can coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h is 47.6 m
(b) thermal energy was generated by friction is 1.88 x J
(C) the average force of friction if the hill has a slope 2.5º above the horizontal is 373 N
Explanation:
given information:
m = 750 kg
initial velocity, = 110 km/h = 110 x 1000/3600 = 30.6 m/s
initial height, = 22 m
slope, θ = 2.5°
(a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h?
according to conservation-energy
EP = EK
mgh =
gh =
h =
= 47.6 m
(b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0 m above its starting point, how much thermal energy was generated by friction?
thermal energy = mgΔh
= mg (h - )
= 750 x 9.8 x (47.6 - 22)
= 188160 Joule
= 1.88 x J
(c) What is the average force of friction if the hill has a slope 2.5º above the horizontal?
f d = mgΔh
f = mgΔh / d,
where h = d sin θ, d = h/sinθ
therefore
f = (mgΔh) / (h/sinθ)
= 1.88 x /(22/sin 2.5°)
= 373 N
I believe its newtons 3rd law for every action there is an equal but opposite reaction since the squid is moving foward by shooting the water its pushing the squid back as its reaction. Hope this helped !
The correct answer to the question is : D) Impulse
EXPLANATION:
Before going to answer this question, first we have to understand impulse.
Impulse of a body is defined as change in momentum or the product of force with time.
Mathematically impulse = F × t = m ( v - u ).
Here, v is the final velocity
u is the initial velocity
F is the force acting on the body for time t.
Hence, the perfect answer of this question is impulse m i.e the force multiplied with time is known as impulse.
Acceleration is the change of velocity, and velocity is the change of distance. The opposite of finding change, or differentiation, is integration.
Acceleration = 1.3 m/s²
Velocity: ∫ 1.3 dx = 1.3x + c m/s
Distance: ∫ 1.3x dx = 1.3x²/2 + c m
Distance run: 1.3*3²/2 = 5.85 m
<em>What</em><em> </em><em>bad</em><em> </em><em>thing</em><em> </em><em>happened</em><em>?</em>
Kinetic energy is energy that is in motion, thats all I remember