1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuki888 [10]
3 years ago
9

Describe the work performed by a ski lift in terms of kinetic and gravitational potential energy

Physics
2 answers:
balu736 [363]3 years ago
7 0

Explanation : When the lift falls, then the gravitational energy changed into the kinetic energy. Gravitational potential  is associated with the mass of the lift and its position. When lift starts from rest , the mechanical energy of the lift  change in the form of potential energy.

When the lift down than the potential energy lost and kinetic energy is gained. Lift loses height and gains speed.

The work is performed by the lift, when lift covers the distance against the gravitational force.

Whitepunk [10]3 years ago
7 0

In order to understand how kinetic and potential energy works in an ski lift it is necessary to know its terms

Potential energy is the energy that a body located from its height above the ground has

Kinetic energy is the energy of a body that is in motion

for the ski lift:

Kinetic Energy: When the ski lift moves from floor to floor

Potential Energy: When the ski lift is standing on the floor and people enter.

Gravitational energy: the chairlift uses the force of gravity to lower and change from potential energy to kinetic energy, with its own weight

I hope its help you

You might be interested in
If an astronaut goes on a space walk outside the Space Station, she will quickly float away from the station unless she has a te
Strike441 [17]

Answer:

d. This statement is false. She and the Space Station share the same orbit and will stay together unless they are pushed apart.

Explanation:

In astronomy, orbit is simply a path of an object around another object in a space. That is, orbit is a path of a body that revolves around a gravitating center of mass. Examples of an orbit is are satellite around a planet, orbit around a center of galaxy, planet around the sun, and among others.

On the other hand, space station refers to a spacecraft that can support a group of human for long time in the orbit. Another names for space stations are orbital space station and orbital station.

Therefore, an astronaut goes on a space walk outside the Space Station shares the same orbit with the space station and they will stay together unless they are pushed apart.

4 0
3 years ago
What is the energy per photon absorbed during the transition from n = 2 to n = 3 in the hydrogen atom?
adelina 88 [10]

Answer : The energy of one photon of hydrogen atom is, 3.03\times 10^{-19}J

Explanation :

First we have to calculate the wavelength of hydrogen atom.

Using Rydberg's Equation:

\frac{1}{\lambda}=R_H\left(\frac{1}{n_i^2}-\frac{1}{n_f^2} \right )

Where,

\lambda = Wavelength of radiation

R_H = Rydberg's Constant  = 10973731.6 m⁻¹

n_f = Higher energy level = 3

n_i= Lower energy level = 2

Putting the values, in above equation, we get:

\frac{1}{\lambda}=(10973731.6)\left(\frac{1}{2^2}-\frac{1}{3^2} \right )

\lambda=6.56\times 10^{-7}m

Now we have to calculate the energy.

E=\frac{hc}{\lambda}

where,

h = Planck's constant = 6.626\times 10^{-34}Js

c = speed of light = 3\times 10^8m/s

\lambda = wavelength = 6.56\times 10^{-7}m

Putting the values, in this formula, we get:

E=\frac{(6.626\times 10^{-34}Js)\times (3\times 10^8m/s)}{6.56\times 10^{-7}m}

E=3.03\times 10^{-19}J

Therefore, the energy of one photon of hydrogen atom is, 3.03\times 10^{-19}J

3 0
3 years ago
You are watching an archery tournament when you start wondering how fast an arrow is shot from the bow. Remembering your physics
spayn [35]

Answer:

v_0 = 3.53~{\rm m/s}

Explanation:

This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.

The initial velocity is in the x-direction, and there is no acceleration in the x-direction.

On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.

Applying the equations of kinematics in the x-direction gives

x - x_0 = v_{x_0} t + \frac{1}{2}a_x t^2\\63 \times 10^{-3} = v_0t + 0\\t = \frac{63\times 10^{-3}}{v_0}

For the y-direction gives

v_y = v_{y_0} + a_y t\\v_y = 0 -9.8t\\v_y = -9.8t

Combining both equation yields the y_component of the final velocity

v_y = -9.8(\frac{63\times 10^{-3}}{v_0}) = -\frac{0.61}{v_0}

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.

\tan(\theta) = \frac{v_y}{v_x}\\\tan(177.2^\circ) = -0.0489 = \frac{v_y}{v_0} = \frac{-0.61/v_0}{v_0} = -\frac{0.61}{v_0^2}\\v_0 = 3.53~{\rm m/s}

6 0
3 years ago
Bill leaves his 60 W desk lamp on every day, including weekends, for eight hours. After one month (30 days), how much total ener
maxonik [38]

' W ' is the symbol for 'Watt' ... the unit of power equal to 1 joule/second.

That's all the physics we need to know to answer this question.
The rest is just arithmetic.

(60 joules/sec) · (30 days) · (8 hours/day) · (3600 sec/hour)

= (60 · 30 · 8 · 3600) (joule · day · hour · sec) / (sec · day · hour)

= 51,840,000 joules
__________________________________

Wait a minute !  Hold up !  Hee haw !  Whoa ! 
Excuse me.  That will never do.
I see they want the answer in units of kilowatt-hours (kWh).
In that case, it's

(60 watts) · (30 days) · (8 hours/day) · (1 kW/1,000 watts)

= (60 · 30 · 8 · 1 / 1,000) (watt · day · hour · kW / day · watt)

= 14.4 kW·hour

Rounded to the nearest whole number:

14 kWh

7 0
3 years ago
The front 1.20 m of a 1,600-kg car is designed as a "crumple zone" that collapses to absorb the shock of a collision. (a) If a c
eimsori [14]

To develop the problem it is necessary to apply the kinematic equations for the description of the position, speed and acceleration.

In turn, we will resort to the application of Newton's second law.

PART A) For the first part we look for the time, in a constant acceleration, knowing the speeds and the displacement therefore we know that,

X_f = X_i +\frac{1}{2}(V_i+V_f)t

Where,

X = Desplazamiento

V = Velocity

t = Time

In this case there is no initial displacement or initial velocity, therefore

X_f = \frac{1}{2} (V_i+V_f)t

Clearing for time,

t = \frac{2X_f}{(V_i+V_f)}

t = \frac{2*1.2}{24+0}

t = 0.1s

PART B) This is a question about the impulse of bodies, where we turn to Newton's second law, because:

F = ma

Where,

m=mass

a = acceleration

Acceleration can also be written as,

a= \frac{\Delta V}{t}

Then

F = m\frac{\Delta V}{t}

F = m\frac{V_f-V_i}{t}

F = m\frac{-V_i}{t}

F = \frac{(1600kg)(-24m/s)}{(0.1s)}

F = -384000N

Negative symbol is because the force is opposite of the direction of moton.

PART C) Acceleration through kinematics equation is defined as

V_f^2=V_i^2-2ax

0 = (24m/s)^2-2*a(1.2m)

a = \frac{(24m/s)^2}{1.2m}

a=480m/s^2

The gravity is equal to 0.8, then the acceleration is

a = 480*\frac{g}{9.8}

a = 53.3g

3 0
3 years ago
Other questions:
  • Sodium and potassium are soft silvery metals. They are both solids at room temperature and react strongly when combined with wat
    12·2 answers
  • Scientists can measure the amounts of different elements found in the universe. Which element's concentration in the universe is
    5·1 answer
  • An object of mass m slides down an incline with angle 0.
    6·2 answers
  • An object has a kinetic energy of 275 j and the momentum of magnitude of 25.0 kg m/s. find the speed and mass of the object
    5·1 answer
  • A cross-country skier moves 32 meters westward, then 54
    7·1 answer
  • Which of these types of electromagnetic radiation has the lowest energy? _____
    5·2 answers
  • The melting of glaciers and the polar ice caps poses a devastating threat of potential flooding for low-lying areas. Scientists
    14·1 answer
  • An air capacitor is made by using two flat plates, each with area A, separated by a distance d. Then a metal slab having thickne
    6·1 answer
  • A birthmark is generally a:<br><br> macule.<br><br> excoriation.<br><br> pustule.<br><br> bullae.
    8·2 answers
  • DC current is flowing in the primary coil of a transformer. Which of the following DOES NOT happen? A. There is a magnetic field
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!