Mass/volume is the formulae
Lift force exerted by the air on the rotors=143244 N
Explanation:
we use Newtons second law
F- (M+m)g=(M+m)a
F= lift force
m= mass of helicopter= 13000 Kg
M= mass of car= 2000 lb=907.2 kg
a= acceleration= 0.5 m/s²
g= acceleration due to gravity
F- (M+m)g=(M+m)a
F=(M+m)(a+g)
F=(13000+907.2)(0.5+9.8)
F=143244 N
Answer:
Explanation:
From the free-body diagram for the car, we have that the normal force has a vertical component and a horizontal component, and this component act as the centripetal force on the car:
Solving N from (2) and replacing in (1):
The centripetal acceleration is given by:
Replacing and solving for v:
Answer:
pressure in cylinder A must be one third of pressure in cylinder B
Explanation:
We are told that the temperature and quantity of the gases in the 2 cylinders are same.
Thus, number of moles and temperature will be the same for both cylinders.
To this effect we will use the formula for ideal gas equation which is;
PV = nRT
Where;
P is prrssure
V is volume
n is number of moles
T is temperature
R is gas constant
We are told that Cylinder A has three times the volume of cylinder .
Thus;
V_a = 3V_b
For cylinder A;
Pressure = P_a
Volume = 3V_b
Number of moles = n
Thus;
P_a × 3V_b = nRT
For cylinder B;
Pressure = P_b
Volume = V_b
Number of moles = n
Thus,
P_b × V_b = nRT
Combining the equations for both cylinders, we have;
P_a × 3V_b = P_b × V_b
V_b will cancel out to give;
3P_a = P_b
Divide both sides by 3 to get;
P_a = ⅓P_b
Thus, pressure in cylinder A must be one third of pressure in cylinder B