Answer:
Decomposition reaction
Explanation:
Chemical equation:
2KClO₃ → 2KCl + 3O₂
The given reaction is decomposition reaction.
Decomposition reaction:
It is the reaction in which one reactant is break down into two or more product.
AB → A + B
Synthesis reaction:
It is the reaction in which two or more simple substance react to give one or more complex product.
Single replacement:
It is the reaction in which one elements replace the other element in compound.
AB + C → AC + B
Double replacement:
It is the reaction in which two compound exchange their ions and form new compounds.
AB + CD → AC +BD
Barium-131's radiation level won't reach 1/4 of its initial level for 24 hours.
ln[A] t = -kt + ln[A] 0 is the integrated rate rule for the first-order reaction A's products.
A straight line is produced when the natural log of [A] is plotted as a function of time since this equation has the form y = mx + b.
How is the length of a half-life determined?
The amount of time needed for the reactant concentration to drop to half its initial value is known as the half-life of a reaction. A first-order reaction's half-life is a constant that is correlated with its rate constant:
t 1/2 = 0.693/k.
To know more about rate constant, visit:
brainly.com/question/20305871
#SPJ4
This doesn't need an ICE chart. Both will fully dissociate in water.
Assume HClO4 and KOH reacts with one another. All you need to do is determine how much HClO4 will remain after the reaction. Calculate pH.
Step 1:
write out balanced equation for the reaction
HClO4+KOH ⇔ KClO4 + H2O
the ratio of HClO4 to KOH is going to be 1:1. Each mole of KOH we add will fully react with 1 mole of HClO4
Step 2:
Determining the number of moles present in HClO4 and KOH
Use the molar concentration and the volume for each:
25 mL of 0.723 M HClO4
Covert volume from mL into L:
25 mL * 1L/1000mL = 0.025 L
Remember:
M = moles/L so we have 0.025 L of 0.723 moles/L HClO4
Multiply the volume in L by the molar concentration to get:
0.025L x 0.723mol/L = 0.0181 moles HClO4.
Add 66.2 mL KOH with conc.=0.273M
66.2mL*1L/1000mL = .0662 L
.0662L x 0.273mol/L = 0.0181 moles KOH
Step 3:
Determine how much HClO4 remains after reacting with the KOH.
Since both reactants fully dissociate and are used in a 1:1 ratio, we just subtract the number of moles of KOH from the number of moles of HClO4:
moles HClO4 = 0.0181; moles KOH = 0.0181, so 0.0181-0.0181 = 0
This means all of the HClO4 is used up in the reaction.
If all of the acid is fully reacted with the base, the pH will be neutral = 7.
Determine the H3O+ concentration:
pH = -log[H3O+]; [H3O+] = 10-pH = 10-7
The correct answer is 1.0x10-7.
WATER is wet to make it a more marketable commodity